MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM
- URL: http://arxiv.org/abs/2505.24238v2
- Date: Mon, 02 Jun 2025 04:16:04 GMT
- Title: MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM
- Authors: Bowen Dong, Minheng Ni, Zitong Huang, Guanglei Yang, Wangmeng Zuo, Lei Zhang,
- Abstract summary: Multimodal hallucinations are multi-sourced and arise from diverse causes.<n>Existing benchmarks fail to adequately distinguish between perception-induced hallucinations and reasoning-induced hallucinations.
- Score: 58.2298313720146
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multimodal hallucination in multimodal large language models (MLLMs) restricts the correctness of MLLMs. However, multimodal hallucinations are multi-sourced and arise from diverse causes. Existing benchmarks fail to adequately distinguish between perception-induced hallucinations and reasoning-induced hallucinations. This failure constitutes a significant issue and hinders the diagnosis of multimodal reasoning failures within MLLMs. To address this, we propose the {\dataset} benchmark, which isolates reasoning hallucinations by constructing questions where input images are correctly perceived by MLLMs yet reasoning errors persist. {\dataset} introduces multi-granular evaluation metrics: accuracy, factuality, and LLMs hallucination score for hallucination quantification. Our analysis reveals that (1) the model scale, data scale, and training stages significantly affect the degree of logical, fabrication, and factual hallucinations; (2) current MLLMs show no effective improvement on spatial hallucinations caused by misinterpreted spatial relationships, indicating their limited visual reasoning capabilities; and (3) question types correlate with distinct hallucination patterns, highlighting targeted challenges and potential mitigation strategies. To address these challenges, we propose {\method}, a method that combines curriculum reinforcement fine-tuning to encourage models to generate logic-consistent reasoning chains by stepwise reducing learning difficulty, and collaborative hint inference to reduce reasoning complexity. {\method} establishes a baseline on {\dataset}, and reduces the logical hallucinations in original base models.
Related papers
- Theoretical Foundations and Mitigation of Hallucination in Large Language Models [0.0]
Hallucination in Large Language Models (LLMs) refers to the generation of content that is not faithful to the input or the real-world facts.<n>This paper provides a rigorous treatment of hallucination in LLMs, including formal definitions and theoretical analyses.
arXiv Detail & Related papers (2025-07-20T15:22:34Z) - HalluLens: LLM Hallucination Benchmark [49.170128733508335]
Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as "hallucination"<n>This paper introduces a comprehensive hallucination benchmark, incorporating both new extrinsic and existing intrinsic evaluation tasks.
arXiv Detail & Related papers (2025-04-24T13:40:27Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
multimodal large language models (MLLMs) have shown unprecedented capabilities in advancing vision-language tasks.<n>This paper introduces a novel bottom-up reasoning framework to address hallucinations in MLLMs.<n>Our framework systematically addresses potential issues in both visual and textual inputs by verifying and integrating perception-level information with cognition-level commonsense knowledge.
arXiv Detail & Related papers (2024-12-15T09:10:46Z) - FG-PRM: Fine-grained Hallucination Detection and Mitigation in Language Model Mathematical Reasoning [10.709365940160685]
Existing approaches primarily detect the presence of hallucinations but lack a nuanced understanding of their types and manifestations.
We introduce a comprehensive taxonomy that categorizes the common hallucinations in mathematical reasoning task into six types.
We then propose FG-PRM, an augmented model designed to detect and mitigate hallucinations in a fine-grained, step-level manner.
arXiv Detail & Related papers (2024-10-08T19:25:26Z) - Reefknot: A Comprehensive Benchmark for Relation Hallucination Evaluation, Analysis and Mitigation in Multimodal Large Language Models [13.48296910438554]
We introduce Reefknot, a comprehensive benchmark targeting relation hallucinations, comprising over 20,000 real-world samples.<n>We provide a systematic definition of relation hallucinations, integrating perceptive and cognitive perspectives, and construct a relation-based corpus using the Visual Genome scene graph dataset.<n>We propose a novel confidence-based mitigation strategy, which reduces the hallucination rate by an average of 9.75% across three datasets, including Reefknot.
arXiv Detail & Related papers (2024-08-18T10:07:02Z) - Interpreting and Mitigating Hallucination in MLLMs through Multi-agent Debate [34.17353224636788]
We argue that hallucination in MLLMs is partially due to a lack of slow-thinking and divergent-thinking in these models.
Our approach can not only hallucinations but also interpret why they occur and detail the specifics of hallucination.
arXiv Detail & Related papers (2024-07-30T02:41:32Z) - Hallucination Augmented Contrastive Learning for Multimodal Large
Language Model [53.65682783591723]
Multi-modal large language models (MLLMs) have been shown to efficiently integrate natural language with visual information to handle multi-modal tasks.
However, MLLMs still face a fundamental limitation of hallucinations, where they tend to generate erroneous or fabricated information.
In this paper, we address hallucinations in MLLMs from a novel perspective of representation learning.
arXiv Detail & Related papers (2023-12-12T04:05:15Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks.
LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge.
arXiv Detail & Related papers (2023-09-03T16:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.