Taming Hyperparameter Sensitivity in Data Attribution: Practical Selection Without Costly Retraining
- URL: http://arxiv.org/abs/2505.24261v1
- Date: Fri, 30 May 2025 06:33:56 GMT
- Title: Taming Hyperparameter Sensitivity in Data Attribution: Practical Selection Without Costly Retraining
- Authors: Weiyi Wang, Junwei Deng, Yuzheng Hu, Shiyuan Zhang, Xirui Jiang, Runting Zhang, Han Zhao, Jiaqi W. Ma,
- Abstract summary: Data attribution methods quantify the influence of individual training data points on a machine learning model.<n>Despite a recent surge of new methods developed in this space, the impact of hyperparameter tuning in these methods remains under-explored.
- Score: 10.018043411223125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data attribution methods, which quantify the influence of individual training data points on a machine learning model, have gained increasing popularity in data-centric applications in modern AI. Despite a recent surge of new methods developed in this space, the impact of hyperparameter tuning in these methods remains under-explored. In this work, we present the first large-scale empirical study to understand the hyperparameter sensitivity of common data attribution methods. Our results show that most methods are indeed sensitive to certain key hyperparameters. However, unlike typical machine learning algorithms -- whose hyperparameters can be tuned using computationally-cheap validation metrics -- evaluating data attribution performance often requires retraining models on subsets of training data, making such metrics prohibitively costly for hyperparameter tuning. This poses a critical open challenge for the practical application of data attribution methods. To address this challenge, we advocate for better theoretical understandings of hyperparameter behavior to inform efficient tuning strategies. As a case study, we provide a theoretical analysis of the regularization term that is critical in many variants of influence function methods. Building on this analysis, we propose a lightweight procedure for selecting the regularization value without model retraining, and validate its effectiveness across a range of standard data attribution benchmarks. Overall, our study identifies a fundamental yet overlooked challenge in the practical application of data attribution, and highlights the importance of careful discussion on hyperparameter selection in future method development.
Related papers
- EKPC: Elastic Knowledge Preservation and Compensation for Class-Incremental Learning [53.88000987041739]
Class-Incremental Learning (CIL) aims to enable AI models to continuously learn from sequentially arriving data of different classes over time.<n>We propose the Elastic Knowledge Preservation and Compensation (EKPC) method, integrating Importance-aware importance Regularization (IPR) and Trainable Semantic Drift Compensation (TSDC) for CIL.
arXiv Detail & Related papers (2025-06-14T05:19:58Z) - UNEM: UNrolled Generalized EM for Transductive Few-Shot Learning [35.62208317531141]
We advocate and introduce the unrolling paradigm, also referred to as "learning to optimize"<n>Our unrolling approach covers various statistical feature distributions and pre-training paradigms.<n>We report comprehensive experiments, which cover a breadth of fine-grained downstream image classification tasks.
arXiv Detail & Related papers (2024-12-21T19:01:57Z) - Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.<n>We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.<n>As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - Beyond algorithm hyperparameters: on preprocessing hyperparameters and associated pitfalls in machine learning applications [0.30786914102688595]
This paper reviews and empirically illustrates different procedures for generating and evaluating prediction models.<n>By highlighting potential pitfalls, especially those that may lead to exaggerated performance claims, this review aims to further improve the quality of predictive modeling in ML applications.
arXiv Detail & Related papers (2024-12-04T17:29:10Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Machine unlearning through fine-grained model parameters perturbation [26.653596302257057]
We propose fine-grained Top-K and Random-k parameters perturbed inexact machine unlearning strategies.<n>We also tackle the challenge of evaluating the effectiveness of machine unlearning.
arXiv Detail & Related papers (2024-01-09T07:14:45Z) - Stabilizing Subject Transfer in EEG Classification with Divergence
Estimation [17.924276728038304]
We propose several graphical models to describe an EEG classification task.
We identify statistical relationships that should hold true in an idealized training scenario.
We design regularization penalties to enforce these relationships in two stages.
arXiv Detail & Related papers (2023-10-12T23:06:52Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
Underlying data structures are often exploited to improve the solution of learning tasks.
Data augmentation induces these symmetries during training by applying multiple transformations to the input data.
This work tackles these issues by automatically adapting the data augmentation while solving the learning task.
arXiv Detail & Related papers (2022-09-29T18:11:01Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Parameters or Privacy: A Provable Tradeoff Between Overparameterization
and Membership Inference [29.743945643424553]
Over parameterized models generalize well (small error on the test data) even when trained to memorize the training data (zero error on the training data)
This has led to an arms race towards increasingly over parameterized models (c.f., deep learning)
arXiv Detail & Related papers (2022-02-02T19:00:21Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
We propose a new method for training predictive machine learning models for prescriptive applications.
This approach is based on tweaking the validation step in the standard training-validating-testing scheme.
Several experiments with synthetic data demonstrate promising results in reducing the prescription costs in both deterministic and real models.
arXiv Detail & Related papers (2021-10-22T15:03:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.