A Novel Discrete Memristor-Coupled Heterogeneous Dual-Neuron Model and Its Application in Multi-Scenario Image Encryption
- URL: http://arxiv.org/abs/2505.24294v1
- Date: Fri, 30 May 2025 07:12:02 GMT
- Title: A Novel Discrete Memristor-Coupled Heterogeneous Dual-Neuron Model and Its Application in Multi-Scenario Image Encryption
- Authors: Yi Zou, Mengjiao Wang, Xinan Zhang, Herbert Ho-Ching Iu,
- Abstract summary: This study introduces a discrete memristive heterogeneous dual-neuron network (MHDNN)<n>The stability of the MHDNN is analyzed with respect to initial conditions and a range of neuronal parameters.<n> Numerical simulations demonstrate complex dynamical behaviors.
- Score: 3.6564419762655898
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulating brain functions using neural networks is an important area of research. Recently, discrete memristor-coupled neurons have attracted significant attention, as memristors effectively mimic synaptic behavior, which is essential for learning and memory. This highlights the biological relevance of such models. This study introduces a discrete memristive heterogeneous dual-neuron network (MHDNN). The stability of the MHDNN is analyzed with respect to initial conditions and a range of neuronal parameters. Numerical simulations demonstrate complex dynamical behaviors. Various neuronal firing patterns are investigated under different coupling strengths, and synchronization phenomena between neurons are explored. The MHDNN is implemented and validated on the STM32 hardware platform. An image encryption algorithm based on the MHDNN is proposed, along with two hardware platforms tailored for multi-scenario police image encryption. These solutions enable real-time and secure transmission of police data in complex environments, reducing hacking risks and enhancing system security.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.<n> embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.<n> split computing - where an SNN is partitioned across two devices - is a promising solution.<n>This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - A frugal Spiking Neural Network for unsupervised classification of continuous multivariate temporal data [0.0]
Spiking Neural Networks (SNNs) are neuromorphic and use more biologically plausible neurons with evolving membrane potentials.
We introduce here a frugal single-layer SNN designed for fully unsupervised identification and classification of multivariate temporal patterns in continuous data.
arXiv Detail & Related papers (2024-08-08T08:15:51Z) - A Spiking Binary Neuron -- Detector of Causal Links [0.0]
Causal relationship recognition is a fundamental operation in neural networks aimed at learning behavior, action planning, and inferring external world dynamics.
This research paper presents a novel approach to realize causal relationship recognition using a simple spiking binary neuron.
arXiv Detail & Related papers (2023-09-15T15:34:17Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - A Fully Memristive Spiking Neural Network with Unsupervised Learning [2.8971214387667494]
The system is fully memristive in that both neuronal and synaptic dynamics can be realized by using memristors.
The proposed MSNN implements STDP learning by using cumulative weight changes in memristive synapses from the voltage waveform changes across the synapses.
arXiv Detail & Related papers (2022-03-02T21:16:46Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Hardware-Friendly Synaptic Orders and Timescales in Liquid State
Machines for Speech Classification [0.0]
Liquid State Machines are brain inspired spiking neural networks (SNNs) with random reservoir connectivity.
We analyze the role of synaptic orders namely: delta (high output for single time step), 0th (rectangular with a finite pulse width), 1st (exponential fall) and 2nd order (exponential rise and fall)
arXiv Detail & Related papers (2021-04-29T11:20:39Z) - Flexible Transmitter Network [84.90891046882213]
Current neural networks are mostly built upon the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons.
We propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity.
We present the Flexible Transmitter Network (FTNet), which is built on the most common fully-connected feed-forward architecture.
arXiv Detail & Related papers (2020-04-08T06:55:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.