GeoVision Labeler: Zero-Shot Geospatial Classification with Vision and Language Models
- URL: http://arxiv.org/abs/2505.24340v1
- Date: Fri, 30 May 2025 08:32:37 GMT
- Title: GeoVision Labeler: Zero-Shot Geospatial Classification with Vision and Language Models
- Authors: Gilles Quentin Hacheme, Girmaw Abebe Tadesse, Caleb Robinson, Akram Zaytar, Rahul Dodhia, Juan M. Lavista Ferres,
- Abstract summary: We introduce GeoVision Labeler (GVL), a strictly zero-shot classification framework.<n>GVL generates rich, human-readable image descriptions, which are then mapped to user-defined classes.<n>It achieves up to 93.2% zero-shot accuracy on the binary Buildings vs. No Buildings task on SpaceNet v7.
- Score: 3.5759681393339697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classifying geospatial imagery remains a major bottleneck for applications such as disaster response and land-use monitoring-particularly in regions where annotated data is scarce or unavailable. Existing tools (e.g., RS-CLIP) that claim zero-shot classification capabilities for satellite imagery nonetheless rely on task-specific pretraining and adaptation to reach competitive performance. We introduce GeoVision Labeler (GVL), a strictly zero-shot classification framework: a vision Large Language Model (vLLM) generates rich, human-readable image descriptions, which are then mapped to user-defined classes by a conventional Large Language Model (LLM). This modular, and interpretable pipeline enables flexible image classification for a large range of use cases. We evaluated GVL across three benchmarks-SpaceNet v7, UC Merced, and RESISC45. It achieves up to 93.2% zero-shot accuracy on the binary Buildings vs. No Buildings task on SpaceNet v7. For complex multi-class classification tasks (UC Merced, RESISC45), we implemented a recursive LLM-driven clustering to form meta-classes at successive depths, followed by hierarchical classification-first resolving coarse groups, then finer distinctions-to deliver competitive zero-shot performance. GVL is open-sourced at https://github.com/microsoft/geo-vision-labeler to catalyze adoption in real-world geospatial workflows.
Related papers
- GraphVL: Graph-Enhanced Semantic Modeling via Vision-Language Models for Generalized Class Discovery [11.006059998223908]
We introduce GraphVL, a novel approach for vision-language modeling in Generalized Category Discovery (GCD)
Our method integrates a graph convolutional network (GCN) with CLIP's text encoder to preserve class neighborhood structure.
Our experiments on seven benchmark datasets consistently demonstrate the superiority of GraphVL when integrated with the CLIP backbone.
arXiv Detail & Related papers (2024-11-04T13:26:15Z) - African or European Swallow? Benchmarking Large Vision-Language Models for Fine-Grained Object Classification [53.89380284760555]
textttFOCI (textbfFine-grained textbfObject textbfClasstextbfIfication) is a difficult multiple-choice benchmark for fine-grained object classification.
textttFOCIxspace complements five popular classification datasets with four domain-specific subsets from ImageNet-21k.
arXiv Detail & Related papers (2024-06-20T16:59:39Z) - Unleashing Unlabeled Data: A Paradigm for Cross-View Geo-Localization [28.941724648519102]
This paper investigates the effective utilization of unlabeled data for large-area cross-view geo-localization (CVGL)
Common approaches to CVGL rely on ground-satellite image pairs and employ label-driven supervised training.
We propose an unsupervised framework including a cross-view projection to guide the model for retrieving initial pseudo-labels.
arXiv Detail & Related papers (2024-03-21T07:48:35Z) - OMH: Structured Sparsity via Optimally Matched Hierarchy for Unsupervised Semantic Segmentation [69.37484603556307]
Un Semantic segmenting (USS) involves segmenting images without relying on predefined labels.
We introduce a novel approach called Optimally Matched Hierarchy (OMH) to simultaneously address the above issues.
Our OMH yields better unsupervised segmentation performance compared to existing USS methods.
arXiv Detail & Related papers (2024-03-11T09:46:41Z) - Towards Realistic Zero-Shot Classification via Self Structural Semantic
Alignment [53.2701026843921]
Large-scale pre-trained Vision Language Models (VLMs) have proven effective for zero-shot classification.
In this paper, we aim at a more challenging setting, Realistic Zero-Shot Classification, which assumes no annotation but instead a broad vocabulary.
We propose the Self Structural Semantic Alignment (S3A) framework, which extracts structural semantic information from unlabeled data while simultaneously self-learning.
arXiv Detail & Related papers (2023-08-24T17:56:46Z) - Enhancing Self-Supervised Learning for Remote Sensing with Elevation
Data: A Case Study with Scarce And High Level Semantic Labels [1.534667887016089]
This work proposes a hybrid unsupervised and supervised learning method to pre-train models applied in Earth observation downstream tasks.
We combine a contrastive approach to pre-train models with a pixel-wise regression pre-text task to predict coarse elevation maps.
arXiv Detail & Related papers (2023-04-13T23:01:11Z) - Masked Unsupervised Self-training for Zero-shot Image Classification [98.23094305347709]
Masked Unsupervised Self-Training (MUST) is a new approach which leverages two different and complimentary sources of supervision: pseudo-labels and raw images.
MUST improves upon CLIP by a large margin and narrows the performance gap between unsupervised and supervised classification.
arXiv Detail & Related papers (2022-06-07T02:03:06Z) - Integrative Few-Shot Learning for Classification and Segmentation [37.50821005917126]
We introduce the integrative task of few-shot classification and segmentation (FS-CS)
FS-CS aims to classify and segment target objects in a query image when the target classes are given with a few examples.
We propose the integrative few-shot learning framework for FS-CS, which trains a learner to construct class-wise foreground maps.
arXiv Detail & Related papers (2022-03-29T16:14:40Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
We present an efficient localization module that can be fused with a classification network in an end-to-end setup.
We evaluate the new model on the three benchmark datasets CUB200-2011, Stanford Cars and FGVC-Aircraft.
arXiv Detail & Related papers (2020-05-11T14:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.