Knowing Before Saying: LLM Representations Encode Information About Chain-of-Thought Success Before Completion
- URL: http://arxiv.org/abs/2505.24362v2
- Date: Mon, 02 Jun 2025 10:26:59 GMT
- Title: Knowing Before Saying: LLM Representations Encode Information About Chain-of-Thought Success Before Completion
- Authors: Anum Afzal, Florian Matthes, Gal Chechik, Yftah Ziser,
- Abstract summary: We investigate whether the success of a zero-shot Chain-of-Thought process can be predicted before completion.<n>We find that a probing classifier, based on LLM representations, performs well even before a single token is generated.
- Score: 34.582439587552656
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate whether the success of a zero-shot Chain-of-Thought (CoT) process can be predicted before completion. We discover that a probing classifier, based on LLM representations, performs well \emph{even before a single token is generated}, suggesting that crucial information about the reasoning process is already present in the initial steps representations. In contrast, a strong BERT-based baseline, which relies solely on the generated tokens, performs worse, likely because it depends on shallow linguistic cues rather than deeper reasoning dynamics. Surprisingly, using later reasoning steps does not always improve classification. When additional context is unhelpful, earlier representations resemble later ones more, suggesting LLMs encode key information early. This implies reasoning can often stop early without loss. To test this, we conduct early stopping experiments, showing that truncating CoT reasoning still improves performance over not using CoT at all, though a gap remains compared to full reasoning. However, approaches like supervised learning or reinforcement learning designed to shorten CoT chains could leverage our classifier's guidance to identify when early stopping is effective. Our findings provide insights that may support such methods, helping to optimize CoT's efficiency while preserving its benefits.
Related papers
- Think Clearly: Improving Reasoning via Redundant Token Pruning [57.01254508252785]
We show that deliberately removing redundancy in the reasoning process significantly improves performance.<n>We demonstrate that our method significantly improves overall accuracy across reasoning-intensive benchmarks without any training.
arXiv Detail & Related papers (2025-06-17T06:04:01Z) - Multipole Attention for Efficient Long Context Reasoning [64.94673641704289]
Large Reasoning Models (LRMs) have shown promising accuracy improvements on complex problem-solving tasks.<n>LRMs need to generate long chain-of-thought reasoning in order to think before answering.<n>We introduce Multipole Attention, which accelerates autoregressive reasoning by only computing exact attention for the most important tokens.
arXiv Detail & Related papers (2025-06-16T03:00:40Z) - Reinforced Latent Reasoning for LLM-based Recommendation [83.18146814163308]
Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks.<n>Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data.<n>In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning.
arXiv Detail & Related papers (2025-05-25T11:03:45Z) - ThinkLess: A Training-Free Inference-Efficient Method for Reducing Reasoning Redundancy [8.962703809086628]
ThinkLess is an inference-efficient framework that terminates reasoning generation early and maintains output quality without modifying the model.<n>We show that ThinkLess achieves comparable accuracy to full-length Chain-of-Thought (CoT) decoding while greatly reducing decoding time and memory consumption.
arXiv Detail & Related papers (2025-05-21T15:58:16Z) - Fractured Chain-of-Thought Reasoning [61.647243580650446]
We introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling.<n>We show that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget.
arXiv Detail & Related papers (2025-05-19T11:30:41Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
We introduce Unsupervised Prefix Fine-Tuning (UPFT) to enhance large language models' reasoning efficiency.<n>UPFT removes the need for labeled data or exhaustive sampling.<n> Experiments show that UPFT matches the performance of supervised methods.
arXiv Detail & Related papers (2025-03-04T18:56:03Z) - Understanding Before Reasoning: Enhancing Chain-of-Thought with Iterative Summarization Pre-Prompting [5.2778223130693]
Chain-of-Thought (CoT) Prompting is a dominant paradigm in Large Language Models (LLMs)<n>We propose a pre-prompting method called Iterative Summarization Pre-Prompting (ISP2) to refine LLM reasoning when key information is not explicitly provided.<n>ISP2 adopts an inductive approach with pre-prompting, offering flexible integration into diverse reasoning frameworks.
arXiv Detail & Related papers (2025-01-08T08:26:56Z) - Markov Chain of Thought for Efficient Mathematical Reasoning [10.678633785012691]
Chain of Thought (CoT) of multi-step benefits from the logical structure of the reasoning steps and task-specific actions.<n>We conceptualize the standard multi-step CoT as a novel Markov Chain of Thought (MCoT)<n>Our MCoT aims to compress previous reasoning steps into a simplified question, enabling efficient next-step inference.
arXiv Detail & Related papers (2024-10-23T07:53:29Z) - To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning [55.52872152909785]
Chain-of-thought (CoT) via prompting is the de facto method for eliciting reasoning capabilities from large language models (LLMs)<n>We show that CoT gives strong performance benefits primarily on tasks involving math or logic, with much smaller gains on other types of tasks.
arXiv Detail & Related papers (2024-09-18T17:55:00Z) - Larger Language Models Don't Care How You Think: Why Chain-of-Thought Prompting Fails in Subjective Tasks [25.562937159039038]
In-Context Learning (ICL) in Large Language Models (LLM) has emerged as the dominant technique for performing natural language tasks.
We show that ICL relies mostly on the retrieval of task priors and less so on "learning" to perform tasks.
We find that, surprisingly, Chain-of-Thought (CoT) indeed suffers from the same posterior collapse as ICL for larger language models.
arXiv Detail & Related papers (2024-09-10T03:06:17Z) - Fine-Tuning on Diverse Reasoning Chains Drives Within-Inference CoT Refinement in LLMs [63.36637269634553]
We introduce a novel approach where LLMs are fine-tuned to generate a sequence of Diverse Chains of Thought (DCoT) within a single inference step.<n>We show that fine-tuning on DCoT improves performance over the CoT baseline across model families and scales.<n>Our work is also significant because both quantitative analyses and manual evaluations reveal the observed gains stem from the models' ability to refine an initial reasoning chain.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - Chain-of-Thought Reasoning Without Prompting [40.92854235219315]
CoT reasoning paths can be elicited from pre-trained language models by simply altering the textitdecoding process.
The presence of a CoT in the decoding path correlates with a higher confidence in the model's decoded answer.
arXiv Detail & Related papers (2024-02-15T18:55:41Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
Chain-of-Thought (CoT) prompting can dramatically improve the multi-step reasoning abilities of large language models (LLMs)
We show that CoT reasoning is possible even with invalid demonstrations.
arXiv Detail & Related papers (2022-12-20T05:20:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.