Reinforced Latent Reasoning for LLM-based Recommendation
- URL: http://arxiv.org/abs/2505.19092v1
- Date: Sun, 25 May 2025 11:03:45 GMT
- Title: Reinforced Latent Reasoning for LLM-based Recommendation
- Authors: Yang Zhang, Wenxin Xu, Xiaoyan Zhao, Wenjie Wang, Fuli Feng, Xiangnan He, Tat-Seng Chua,
- Abstract summary: Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks.<n>Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data.<n>In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning.
- Score: 83.18146814163308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated impressive reasoning capabilities in complex problem-solving tasks, sparking growing interest in their application to preference reasoning in recommendation systems. Existing methods typically rely on fine-tuning with explicit chain-of-thought (CoT) data. However, these methods face significant practical limitations due to (1) the difficulty of obtaining high-quality CoT data in recommendation and (2) the high inference latency caused by generating CoT reasoning. In this work, we explore an alternative approach that shifts from explicit CoT reasoning to compact, information-dense latent reasoning. This approach eliminates the need for explicit CoT generation and improves inference efficiency, as a small set of latent tokens can effectively capture the entire reasoning process. Building on this idea, we propose $\textit{\underline{R}einforced \underline{Latent} \underline{R}easoning for \underline{R}ecommendation}$ (LatentR$^3$), a novel end-to-end training framework that leverages reinforcement learning (RL) to optimize latent reasoning without relying on any CoT data.LatentR$^3$ adopts a two-stage training strategy: first, supervised fine-tuning to initialize the latent reasoning module, followed by pure RL training to encourage exploration through a rule-based reward design. Our RL implementation is based on a modified GRPO algorithm, which reduces computational overhead during training and introduces continuous reward signals for more efficient learning. Extensive experiments demonstrate that LatentR$^3$ enables effective latent reasoning without any direct supervision of the reasoning process, significantly improving performance when integrated with different LLM-based recommendation methods. Our codes are available at https://anonymous.4open.science/r/R3-A278/.
Related papers
- Compressing Chain-of-Thought in LLMs via Step Entropy [12.576398947428988]
Large Language Models (LLMs) using Chain-of-Thought (CoT) prompting excel at complex reasoning but generate thought processes with considerable redundancy, leading to increased inference costs and reduced efficiency.<n>We introduce a novel CoT compression framework based on step entropy, a metric that quantifies the informational contribution of individual reasoning steps to identify redundancy.
arXiv Detail & Related papers (2025-08-05T11:48:18Z) - Revisiting LLM Reasoning via Information Bottleneck [57.519119962528166]
Large language models (LLMs) have recently demonstrated remarkable progress in reasoning capabilities through reinforcement learning with verifiable rewards (RLVR)<n>We present a theoretical characterization of LLM reasoning grounded in information bottleneck (IB) principle.<n>We propose IB-aware reasoning optimization (IBRO), a framework that encourages reasoning trajectories to be both informative about the final correct answer and generalizable.
arXiv Detail & Related papers (2025-07-24T13:14:25Z) - Reason-to-Recommend: Using Interaction-of-Thought Reasoning to Enhance LLM Recommendation [9.282278040339138]
$textbfR2Rec$ is a reasoning-enhanced recommendation framework.<n>It samples interaction chains from the user-item graph and converts them into structured interaction-of-thoughts.
arXiv Detail & Related papers (2025-06-05T14:16:44Z) - TACO: Think-Answer Consistency for Optimized Long-Chain Reasoning and Efficient Data Learning via Reinforcement Learning in LVLMs [50.820065021136024]
DeepSeek R1 has significantly advanced complex reasoning for large language models (LLMs)<n>Recent methods have attempted to replicate R1's reasoning capabilities in multimodal settings.<n>We propose TACO, a novel reinforcement learning algorithm for visual reasoning.
arXiv Detail & Related papers (2025-05-27T06:30:48Z) - Interleaved Reasoning for Large Language Models via Reinforcement Learning [22.403928213802036]
Long chain-of-thought (CoT) enhances large language models' (LLM) reasoning capabilities.<n>We propose a novel training paradigm that uses reinforcement learning (RL) to guide reasoning LLMs to interleave thinking and answering for multi-hop questions.
arXiv Detail & Related papers (2025-05-26T07:58:17Z) - Hybrid Latent Reasoning via Reinforcement Learning [51.06635386903026]
We explore latent reasoning by leveraging the capabilities of large language models (LLMs) via reinforcement learning (RL)<n>We introduce hybrid reasoning policy optimization (HRPO), an RL-based hybrid latent reasoning approach that integrates prior hidden states into sampled tokens with a learnable gating mechanism.<n>HRPO-trained LLMs remain interpretable and exhibit intriguing behaviors like cross-lingual patterns and shorter completion lengths.
arXiv Detail & Related papers (2025-05-24T01:26:16Z) - $\text{R}^2\text{ec}$: Towards Large Recommender Models with Reasoning [50.291998724376654]
We propose name, a unified large recommender model with intrinsic reasoning capabilities.<n> RecPO is a corresponding reinforcement learning framework that optimize name both the reasoning and recommendation capabilities simultaneously in a single policy update.<n> Experiments on three datasets with various baselines verify the effectiveness of name, showing relative improvements of 68.67% in Hit@5 and 45.21% in NDCG@20.
arXiv Detail & Related papers (2025-05-22T17:55:43Z) - LARES: Latent Reasoning for Sequential Recommendation [96.26996622771593]
We present LARES, a novel and scalable LAtent REasoning framework for Sequential recommendation.<n>Our proposed approach employs a recurrent architecture that allows flexible expansion of reasoning depth without increasing parameter complexity.<n>Our framework exhibits seamless compatibility with existing advanced models, further improving their recommendation performance.
arXiv Detail & Related papers (2025-05-22T16:22:54Z) - Fractured Chain-of-Thought Reasoning [61.647243580650446]
We introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling.<n>We show that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget.
arXiv Detail & Related papers (2025-05-19T11:30:41Z) - On the Emergence of Thinking in LLMs I: Searching for the Right Intuition [34.32871896067864]
We propose a post-training framework called Reinforcement Learning via Self-Play (RLSP)<n> RLSP involves three steps: supervised fine-tuning with human or synthetic demonstrations of the reasoning process, using an exploration reward signal to encourage diverse and efficient reasoning behaviors, and RL training with an outcome verifier to ensure correctness while preventing reward hacking.<n> Empirical studies in the math domain show that RLSP improves reasoning.
arXiv Detail & Related papers (2025-02-10T18:52:04Z) - Offline Reinforcement Learning for LLM Multi-Step Reasoning [15.687002884103537]
OREO (Offline Reasoning Optimization) is an offline reinforcement learning method for enhancing multi-step reasoning.<n>It reduces the need to collect pairwise data and enables better credit assignment.<n>It surpasses existing offline learning methods on multi-step reasoning benchmarks.
arXiv Detail & Related papers (2024-12-20T18:49:45Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.