Diversify and Conquer: Open-set Disagreement for Robust Semi-supervised Learning with Outliers
- URL: http://arxiv.org/abs/2505.24443v1
- Date: Fri, 30 May 2025 10:24:30 GMT
- Title: Diversify and Conquer: Open-set Disagreement for Robust Semi-supervised Learning with Outliers
- Authors: Heejo Kong, Sung-Jin Kim, Gunho Jung, Seong-Whan Lee,
- Abstract summary: Unlabeled data often includes unknown class data, i.e., outliers.<n>We propose a novel framework, Diversify and Conquer (DAC), to enhance SSL robustness.<n>Our key contribution is constructing a collection of differently biased models through a single training process.
- Score: 27.080247169267288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional semi-supervised learning (SSL) ideally assumes that labeled and unlabeled data share an identical class distribution, however in practice, this assumption is easily violated, as unlabeled data often includes unknown class data, i.e., outliers. The outliers are treated as noise, considerably degrading the performance of SSL models. To address this drawback, we propose a novel framework, Diversify and Conquer (DAC), to enhance SSL robustness in the context of open-set semi-supervised learning. In particular, we note that existing open-set SSL methods rely on prediction discrepancies between inliers and outliers from a single model trained on labeled data. This approach can be easily failed when the labeled data is insufficient, leading to performance degradation that is worse than naive SSL that do not account for outliers. In contrast, our approach exploits prediction disagreements among multiple models that are differently biased towards the unlabeled distribution. By leveraging the discrepancies arising from training on unlabeled data, our method enables robust outlier detection even when the labeled data is underspecified. Our key contribution is constructing a collection of differently biased models through a single training process. By encouraging divergent heads to be differently biased towards outliers while making consistent predictions for inliers, we exploit the disagreement among these heads as a measure to identify unknown concepts. Our code is available at https://github.com/heejokong/DivCon.
Related papers
- SSB: Simple but Strong Baseline for Boosting Performance of Open-Set
Semi-Supervised Learning [106.46648817126984]
In this paper, we study the challenging and realistic open-set SSL setting.
The goal is to both correctly classify inliers and to detect outliers.
We find that inlier classification performance can be largely improved by incorporating high-confidence pseudo-labeled data.
arXiv Detail & Related papers (2023-11-17T15:14:40Z) - FlatMatch: Bridging Labeled Data and Unlabeled Data with Cross-Sharpness
for Semi-Supervised Learning [73.13448439554497]
Semi-Supervised Learning (SSL) has been an effective way to leverage abundant unlabeled data with extremely scarce labeled data.
Most SSL methods are commonly based on instance-wise consistency between different data transformations.
We propose FlatMatch which minimizes a cross-sharpness measure to ensure consistent learning performance between the two datasets.
arXiv Detail & Related papers (2023-10-25T06:57:59Z) - IOMatch: Simplifying Open-Set Semi-Supervised Learning with Joint
Inliers and Outliers Utilization [36.102831230805755]
In many real-world applications, unlabeled data will inevitably contain unseen-class outliers not belonging to any of the labeled classes.
We introduce a novel open-set SSL framework, IOMatch, which can jointly utilize inliers and outliers, even when it is difficult to distinguish exactly between them.
arXiv Detail & Related papers (2023-08-25T04:14:02Z) - Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning [69.81438976273866]
Open-set semi-supervised learning (Open-set SSL) considers a more practical scenario, where unlabeled data and test data contain new categories (outliers) not observed in labeled data (inliers)
We introduce evidential deep learning (EDL) as an outlier detector to quantify different types of uncertainty, and design different uncertainty metrics for self-training and inference.
We propose a novel adaptive negative optimization strategy, making EDL more tailored to the unlabeled dataset containing both inliers and outliers.
arXiv Detail & Related papers (2023-03-21T09:07:15Z) - On Non-Random Missing Labels in Semi-Supervised Learning [114.62655062520425]
Semi-Supervised Learning (SSL) is fundamentally a missing label problem.
We explicitly incorporate "class" into SSL.
Our method not only significantly outperforms existing baselines but also surpasses other label bias removal SSL methods.
arXiv Detail & Related papers (2022-06-29T22:01:29Z) - Dash: Semi-Supervised Learning with Dynamic Thresholding [72.74339790209531]
We propose a semi-supervised learning (SSL) approach that uses unlabeled examples to train models.
Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection.
arXiv Detail & Related papers (2021-09-01T23:52:29Z) - OpenMatch: Open-set Consistency Regularization for Semi-supervised
Learning with Outliers [71.08167292329028]
We propose a novel Open-set Semi-Supervised Learning (OSSL) approach called OpenMatch.
OpenMatch unifies FixMatch with novelty detection based on one-vs-all (OVA) classifiers.
It achieves state-of-the-art performance on three datasets, and even outperforms a fully supervised model in detecting outliers unseen in unlabeled data on CIFAR10.
arXiv Detail & Related papers (2021-05-28T23:57:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.