When Large Multimodal Models Confront Evolving Knowledge:Challenges and Pathways
- URL: http://arxiv.org/abs/2505.24449v1
- Date: Fri, 30 May 2025 10:36:19 GMT
- Title: When Large Multimodal Models Confront Evolving Knowledge:Challenges and Pathways
- Authors: Kailin Jiang, Yuntao Du, Yukai Ding, Yuchen Ren, Ning Jiang, Zhi Gao, Zilong Zheng, Lei Liu, Bin Li, Qing Li,
- Abstract summary: Large language/multimodal models (LLMs/LMMs) store extensive pre-trained knowledge but struggle to maintain consistency with real-world updates.<n>We propose the EVOKE benchmark to evaluate LMMs' ability to inject multimodal evolving knowledge in real-world scenarios.
- Score: 33.07000185684693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language/multimodal models (LLMs/LMMs) store extensive pre-trained knowledge but struggle to maintain consistency with real-world updates, making it difficult to avoid catastrophic forgetting while acquiring evolving knowledge. Previous work focused on constructing textual knowledge datasets and exploring knowledge injection in LLMs, lacking exploration of multimodal evolving knowledge injection in LMMs. To address this, we propose the EVOKE benchmark to evaluate LMMs' ability to inject multimodal evolving knowledge in real-world scenarios. Meanwhile, a comprehensive evaluation of multimodal evolving knowledge injection revealed two challenges: (1) Existing knowledge injection methods perform terribly on evolving knowledge. (2) Supervised fine-tuning causes catastrophic forgetting, particularly instruction following ability is severely compromised. Additionally, we provide pathways and find that: (1) Text knowledge augmentation during the training phase improves performance, while image augmentation cannot achieve it. (2) Continual learning methods, especially Replay and MoELoRA, effectively mitigate forgetting. Our findings indicate that current knowledge injection methods have many limitations on evolving knowledge, which motivates further research on more efficient and stable knowledge injection methods.
Related papers
- Unveiling Knowledge Utilization Mechanisms in LLM-based Retrieval-Augmented Generation [77.10390725623125]
retrieval-augmented generation (RAG) is widely employed to expand their knowledge scope.<n>Since RAG has shown promise in knowledge-intensive tasks like open-domain question answering, its broader application to complex tasks and intelligent assistants has further advanced its utility.<n>We present a systematic investigation of the intrinsic mechanisms by which RAGs integrate internal (parametric) and external (retrieved) knowledge.
arXiv Detail & Related papers (2025-05-17T13:13:13Z) - Memorizing is Not Enough: Deep Knowledge Injection Through Reasoning [60.01714908976762]
This paper proposes a four-tier knowledge injection framework that defines the levels of knowledge injection: memorization, retrieval, reasoning, and association.<n>We then explore various knowledge injection scenarios and evaluate the depth of knowledge injection for each scenario on the benchmark.
arXiv Detail & Related papers (2025-04-01T06:59:59Z) - How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training [92.88889953768455]
Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge.<n>We identify computational subgraphs that facilitate knowledge storage and processing.
arXiv Detail & Related papers (2025-02-16T16:55:43Z) - Synthetic Knowledge Ingestion: Towards Knowledge Refinement and Injection for Enhancing Large Language Models [1.753683416932648]
Large language models (LLMs) are proficient in capturing factual knowledge across various domains.
In this work, we propose a novel synthetic knowledge ingestion method called Ski.
We then integrate Ski and its variations with three knowledge injection techniques to inject and refine knowledge in language models.
arXiv Detail & Related papers (2024-10-12T19:38:09Z) - InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration [58.61492157691623]
Methods for integrating knowledge have been developed, which augment LLMs with domain-specific knowledge graphs through external modules.<n>Our research focuses on a novel problem: efficiently integrating unknown knowledge into LLMs without unnecessary overlap of known knowledge.<n>A risk of introducing new knowledge is the potential forgetting of existing knowledge.
arXiv Detail & Related papers (2024-02-18T03:36:26Z) - KnowTuning: Knowledge-aware Fine-tuning for Large Language Models [83.5849717262019]
We propose a knowledge-aware fine-tuning (KnowTuning) method to improve fine-grained and coarse-grained knowledge awareness of LLMs.
KnowTuning generates more facts with less factual error rate under fine-grained facts evaluation.
arXiv Detail & Related papers (2024-02-17T02:54:32Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
Large language models (LLMs) outperform information retrieval techniques for downstream knowledge-intensive tasks.
However, community concerns abound regarding the factuality and potential implications of using this uncensored knowledge.
We introduce CONNER, designed to evaluate generated knowledge from six important perspectives.
arXiv Detail & Related papers (2023-10-11T08:22:37Z) - KnowRU: Knowledge Reusing via Knowledge Distillation in Multi-agent
Reinforcement Learning [16.167201058368303]
Deep Reinforcement Learning (RL) algorithms have achieved dramatically progress in the multi-agent area.
To alleviate this problem, efficient leveraging of the historical experience is essential.
We propose a method, named "KnowRU" for knowledge reusing.
arXiv Detail & Related papers (2021-03-27T12:38:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.