Unveiling Knowledge Utilization Mechanisms in LLM-based Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2505.11995v1
- Date: Sat, 17 May 2025 13:13:13 GMT
- Title: Unveiling Knowledge Utilization Mechanisms in LLM-based Retrieval-Augmented Generation
- Authors: Yuhao Wang, Ruiyang Ren, Yucheng Wang, Wayne Xin Zhao, Jing Liu, Hua Wu, Haifeng Wang,
- Abstract summary: retrieval-augmented generation (RAG) is widely employed to expand their knowledge scope.<n>Since RAG has shown promise in knowledge-intensive tasks like open-domain question answering, its broader application to complex tasks and intelligent assistants has further advanced its utility.<n>We present a systematic investigation of the intrinsic mechanisms by which RAGs integrate internal (parametric) and external (retrieved) knowledge.
- Score: 77.10390725623125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Considering the inherent limitations of parametric knowledge in large language models (LLMs), retrieval-augmented generation (RAG) is widely employed to expand their knowledge scope. Since RAG has shown promise in knowledge-intensive tasks like open-domain question answering, its broader application to complex tasks and intelligent assistants has further advanced its utility. Despite this progress, the underlying knowledge utilization mechanisms of LLM-based RAG remain underexplored. In this paper, we present a systematic investigation of the intrinsic mechanisms by which LLMs integrate internal (parametric) and external (retrieved) knowledge in RAG scenarios. Specially, we employ knowledge stream analysis at the macroscopic level, and investigate the function of individual modules at the microscopic level. Drawing on knowledge streaming analyses, we decompose the knowledge utilization process into four distinct stages within LLM layers: knowledge refinement, knowledge elicitation, knowledge expression, and knowledge contestation. We further demonstrate that the relevance of passages guides the streaming of knowledge through these stages. At the module level, we introduce a new method, knowledge activation probability entropy (KAPE) for neuron identification associated with either internal or external knowledge. By selectively deactivating these neurons, we achieve targeted shifts in the LLM's reliance on one knowledge source over the other. Moreover, we discern complementary roles for multi-head attention and multi-layer perceptron layers during knowledge formation. These insights offer a foundation for improving interpretability and reliability in retrieval-augmented LLMs, paving the way for more robust and transparent generative solutions in knowledge-intensive domains.
Related papers
- LLM Inference Enhanced by External Knowledge: A Survey [16.319049759753106]
This study explores strategies for using external knowledge to enhance large language models (LLMs)<n>Our comparative analysis highlights the trade-offs among interpretability, scalability, and performance.
arXiv Detail & Related papers (2025-05-30T09:08:51Z) - Introspective Growth: Automatically Advancing LLM Expertise in Technology Judgment [0.0]
Large language models (LLMs) increasingly demonstrate signs of conceptual understanding.<n>Much of their internal knowledge remains latent, loosely structured, and difficult to access or evaluate.<n>We propose self-questioning as a lightweight and scalable strategy to improve LLMs' understanding.
arXiv Detail & Related papers (2025-05-18T15:04:02Z) - How Do LLMs Acquire New Knowledge? A Knowledge Circuits Perspective on Continual Pre-Training [92.88889953768455]
Large Language Models (LLMs) face a critical gap in understanding how they internalize new knowledge.<n>We identify computational subgraphs that facilitate knowledge storage and processing.
arXiv Detail & Related papers (2025-02-16T16:55:43Z) - Knowledge Mechanisms in Large Language Models: A Survey and Perspective [88.51320482620679]
This paper reviews knowledge mechanism analysis from a novel taxonomy including knowledge utilization and evolution.<n>We discuss what knowledge LLMs have learned, the reasons for the fragility of parametric knowledge, and the potential dark knowledge (hypothesis) that will be challenging to address.
arXiv Detail & Related papers (2024-07-22T06:15:59Z) - Evaluating the External and Parametric Knowledge Fusion of Large Language Models [72.40026897037814]
We develop a systematic pipeline for data construction and knowledge infusion to simulate knowledge fusion scenarios.
Our investigation reveals that enhancing parametric knowledge within LLMs can significantly bolster their capability for knowledge integration.
Our findings aim to steer future explorations on harmonizing external and parametric knowledge within LLMs.
arXiv Detail & Related papers (2024-05-29T11:48:27Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to leverage external knowledge.
Existing RAG models often treat LLMs as passive recipients of information.
We introduce ActiveRAG, a multi-agent framework that mimics human learning behavior.
arXiv Detail & Related papers (2024-02-21T06:04:53Z) - InfuserKI: Enhancing Large Language Models with Knowledge Graphs via Infuser-Guided Knowledge Integration [58.61492157691623]
Methods for integrating knowledge have been developed, which augment LLMs with domain-specific knowledge graphs through external modules.<n>Our research focuses on a novel problem: efficiently integrating unknown knowledge into LLMs without unnecessary overlap of known knowledge.<n>A risk of introducing new knowledge is the potential forgetting of existing knowledge.
arXiv Detail & Related papers (2024-02-18T03:36:26Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.