Optimizing the Interface Between Knowledge Graphs and LLMs for Complex Reasoning
- URL: http://arxiv.org/abs/2505.24478v1
- Date: Fri, 30 May 2025 11:27:59 GMT
- Title: Optimizing the Interface Between Knowledge Graphs and LLMs for Complex Reasoning
- Authors: Vasilije Markovic, Lazar Obradovic, Laszlo Hajdu, Jovan Pavlovic,
- Abstract summary: Large Language Models (LLMs) with Knowledge Graphs (KGs)<n>Cognane is a modular framework for end-to-end KG construction and retrieval.<n>We optimize parameters related to chunking, graph construction, retrieval, and prompting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Integrating Large Language Models (LLMs) with Knowledge Graphs (KGs) results in complex systems with numerous hyperparameters that directly affect performance. While such systems are increasingly common in retrieval-augmented generation, the role of systematic hyperparameter optimization remains underexplored. In this paper, we study this problem in the context of Cognee, a modular framework for end-to-end KG construction and retrieval. Using three multi-hop QA benchmarks (HotPotQA, TwoWikiMultiHop, and MuSiQue) we optimize parameters related to chunking, graph construction, retrieval, and prompting. Each configuration is scored using established metrics (exact match, F1, and DeepEval's LLM-based correctness metric). Our results demonstrate that meaningful gains can be achieved through targeted tuning. While the gains are consistent, they are not uniform, with performance varying across datasets and metrics. This variability highlights both the value of tuning and the limitations of standard evaluation measures. While demonstrating the immediate potential of hyperparameter tuning, we argue that future progress will depend not only on architectural advances but also on clearer frameworks for optimization and evaluation in complex, modular systems.
Related papers
- Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.<n>We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - Instruction-Guided Autoregressive Neural Network Parameter Generation [49.800239140036496]
We propose IGPG, an autoregressive framework that unifies parameter synthesis across diverse tasks and architectures.<n>By autoregressively generating neural network weights' tokens, IGPG ensures inter-layer coherence and enables efficient adaptation across models and datasets.<n>Experiments on multiple datasets demonstrate that IGPG consolidates diverse pretrained models into a single, flexible generative framework.
arXiv Detail & Related papers (2025-04-02T05:50:19Z) - Scaling Test-Time Inference with Policy-Optimized, Dynamic Retrieval-Augmented Generation via KV Caching and Decoding [2.368662284133926]
We present a framework for enhancing Retrieval-Augmented Generation (RAG) systems through dynamic retrieval strategies and reinforcement fine-tuning.<n>Our framework integrates two complementary techniques: Policy-d RetrievalAugmented Generation (PORAG) and Adaptive Token-Layer Attention Scoring (ATLAS)<n>Our framework reduces hallucinations, strengthens domain-specific reasoning, and achieves significant efficiency and scalability gains over traditional RAG systems.
arXiv Detail & Related papers (2025-04-02T01:16:10Z) - Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.<n>By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - ContextFormer: Redefining Efficiency in Semantic Segmentation [48.81126061219231]
Convolutional methods, although capturing local dependencies well, struggle with long-range relationships.<n>Vision Transformers (ViTs) excel in global context capture but are hindered by high computational demands.<n>We propose ContextFormer, a hybrid framework leveraging the strengths of CNNs and ViTs in the bottleneck to balance efficiency, accuracy, and robustness for real-time semantic segmentation.
arXiv Detail & Related papers (2025-01-31T16:11:04Z) - ALoRE: Efficient Visual Adaptation via Aggregating Low Rank Experts [71.91042186338163]
ALoRE is a novel PETL method that reuses the hypercomplex parameterized space constructed by Kronecker product to Aggregate Low Rank Experts.<n>Thanks to the artful design, ALoRE maintains negligible extra parameters and can be effortlessly merged into the frozen backbone.
arXiv Detail & Related papers (2024-12-11T12:31:30Z) - Can Custom Models Learn In-Context? An Exploration of Hybrid Architecture Performance on In-Context Learning Tasks [2.2665690736508894]
In-Context Learning (ICL) is a phenomenon where task learning occurs through a prompt sequence without the necessity of parameter updates.
We examine implications of architectural differences between GPT-2 and LLaMa as well as LlaMa and Mamba.
We propose the "ICL regression score", a scalar metric describing a model's whole performance on a specific task.
arXiv Detail & Related papers (2024-11-06T14:25:05Z) - Training of Scaffolded Language Models with Language Supervision: A Survey [62.59629932720519]
This survey organizes the literature on the design and optimization of emerging structures around post-trained LMs.<n>We refer to this overarching structure as scaffolded LMs and focus on LMs that are integrated into multi-step processes with tools.
arXiv Detail & Related papers (2024-10-21T18:06:25Z) - SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.<n>We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.<n>Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - The Impact of Hyperparameters on Large Language Model Inference Performance: An Evaluation of vLLM and HuggingFace Pipelines [6.381783966294295]
Open-source large language models (LLMs) enable developers to create AI-based solutions while maintaining control over aspects such as privacy and compliance.
We analyze the performance, particularly the throughput (tokens generated per unit of time) of 20 LLMs using two inference libraries: vLLM and HuggingFace's pipelines.
arXiv Detail & Related papers (2024-08-02T06:56:59Z) - A Framework for History-Aware Hyperparameter Optimisation in
Reinforcement Learning [8.659973888018781]
A Reinforcement Learning (RL) system depends on a set of initial conditions that affect the system's performance.
We propose a framework based on integrating complex event processing and temporal models, to alleviate these trade-offs.
We tested the proposed approach in a 5G mobile communications case study that uses DQN, a variant of RL, for its decision-making.
arXiv Detail & Related papers (2023-03-09T11:30:40Z) - Shapley-NAS: Discovering Operation Contribution for Neural Architecture
Search [96.20505710087392]
We propose a Shapley value based method to evaluate operation contribution (Shapley-NAS) for neural architecture search.
We show that our method outperforms the state-of-the-art methods by a considerable margin with light search cost.
arXiv Detail & Related papers (2022-06-20T14:41:49Z) - MLPerfTM HPC: A Holistic Benchmark Suite for Scientific Machine Learning
on HPC Systems [32.621917787044396]
We introduceerf HPC, a benchmark suite of scientific machine learning training applications driven by the MLCommonsTM Association.
We develop a systematic framework for their joint analysis and compare them in terms of data staging, algorithmic convergence, and compute performance.
We conclude by characterizing each benchmark with respect to low-level memory, I/O, and network behavior.
arXiv Detail & Related papers (2021-10-21T20:30:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.