Rehearsal with Auxiliary-Informed Sampling for Audio Deepfake Detection
- URL: http://arxiv.org/abs/2505.24486v1
- Date: Fri, 30 May 2025 11:40:50 GMT
- Title: Rehearsal with Auxiliary-Informed Sampling for Audio Deepfake Detection
- Authors: Falih Gozi Febrinanto, Kristen Moore, Chandra Thapa, Jiangang Ma, Vidya Saikrishna, Feng Xia,
- Abstract summary: Rehearsal with Auxiliary-Informed Sampling (RAIS) is a rehearsal-based CL approach for audio deepfake detection.<n>RAIS employs a label generation network to produce auxiliary labels, guiding diverse sample selection for the memory buffer.<n>Extensive experiments show RAIS outperforms state-of-the-art methods, achieving an average Equal Error Rate (EER) of 1.953 % across five experiences.
- Score: 7.402342914903391
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of existing audio deepfake detection frameworks degrades when confronted with new deepfake attacks. Rehearsal-based continual learning (CL), which updates models using a limited set of old data samples, helps preserve prior knowledge while incorporating new information. However, existing rehearsal techniques don't effectively capture the diversity of audio characteristics, introducing bias and increasing the risk of forgetting. To address this challenge, we propose Rehearsal with Auxiliary-Informed Sampling (RAIS), a rehearsal-based CL approach for audio deepfake detection. RAIS employs a label generation network to produce auxiliary labels, guiding diverse sample selection for the memory buffer. Extensive experiments show RAIS outperforms state-of-the-art methods, achieving an average Equal Error Rate (EER) of 1.953 % across five experiences. The code is available at: https://github.com/falihgoz/RAIS.
Related papers
- Statistics-aware Audio-visual Deepfake Detector [11.671275975119089]
Methods in audio-visualfake detection mostly assess the synchronization between audio and visual features.
We propose a statistical feature loss to enhance the discrimination capability of the model.
Experiments on the DFDC and FakeAVCeleb datasets demonstrate the relevance of the proposed method.
arXiv Detail & Related papers (2024-07-16T12:15:41Z) - The Codecfake Dataset and Countermeasures for the Universally Detection of Deepfake Audio [42.84634652376024]
ALM-based deepfake audio exhibits widespread, high deception, and type versatility.<n>To effectively detect ALM-based deepfake audio, we focus on the mechanism of the ALM-based audio generation method.<n>We propose the CSAM strategy to learn a domain balanced and generalized minima.
arXiv Detail & Related papers (2024-05-08T08:28:40Z) - Retrieval-Augmented Audio Deepfake Detection [27.13059118273849]
We propose a retrieval-augmented detection framework that augments test samples with similar retrieved samples for enhanced detection.
Experiments show the superior performance of the proposed RAD framework over baseline methods.
arXiv Detail & Related papers (2024-04-22T05:46:40Z) - Combating Label Noise With A General Surrogate Model For Sample Selection [77.45468386115306]
We propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically.<n>We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets.
arXiv Detail & Related papers (2023-10-16T14:43:27Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
We reformulate the SED problem by taking a generative learning perspective.
Specifically, we aim to generate sound temporal boundaries from noisy proposals in a denoising diffusion process.
During training, our model learns to reverse the noising process by converting noisy latent queries to the groundtruth versions.
arXiv Detail & Related papers (2023-08-14T17:29:41Z) - Do You Remember? Overcoming Catastrophic Forgetting for Fake Audio
Detection [54.20974251478516]
We propose a continual learning algorithm for fake audio detection to overcome catastrophic forgetting.
When fine-tuning a detection network, our approach adaptively computes the direction of weight modification according to the ratio of genuine utterances and fake utterances.
Our method can easily be generalized to related fields, like speech emotion recognition.
arXiv Detail & Related papers (2023-08-07T05:05:49Z) - Continual Learning with Strong Experience Replay [32.154995019080594]
We propose a CL method with Strong Experience Replay (SER)
SER utilizes future experiences mimicked on the current training data, besides distilling past experience from the memory buffer.
Experimental results on multiple image classification datasets show that our SER method surpasses the state-of-the-art methods by a noticeable margin.
arXiv Detail & Related papers (2023-05-23T02:42:54Z) - Continual Learning for Fake Audio Detection [62.54860236190694]
This paper proposes detecting fake without forgetting, a continual-learning-based method, to make the model learn new spoofing attacks incrementally.
Experiments are conducted on the ASVspoof 2019 dataset.
arXiv Detail & Related papers (2021-04-15T07:57:05Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
Subsampling of received wireless signals is important for relaxing hardware requirements as well as the computational cost of signal processing algorithms.
We propose a subsampling technique to facilitate the use of deep learning for automatic modulation classification in wireless communication systems.
arXiv Detail & Related papers (2020-05-10T06:11:13Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
Machine learning algorithms can be negatively affected by mismatches between training (source) and test (target) data distributions.
We propose an unsupervised domain adaptation method that consists of aligning the first- and second-order sample statistics of each frequency band of target-domain acoustic scenes to the ones of the source-domain training dataset.
We show that the proposed method outperforms the state-of-the-art unsupervised methods found in the literature in terms of both source- and target-domain classification accuracy.
arXiv Detail & Related papers (2020-04-30T23:56:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.