論文の概要: Mixture-of-Experts for Personalized and Semantic-Aware Next Location Prediction
- arxiv url: http://arxiv.org/abs/2505.24597v1
- Date: Fri, 30 May 2025 13:45:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.977636
- Title: Mixture-of-Experts for Personalized and Semantic-Aware Next Location Prediction
- Title(参考訳): パーソナライズされたセマンティックな次の位置予測のためのMixture-of-Experts
- Authors: Shuai Liu, Ning Cao, Yile Chen, Yue Jiang, Gao Cong,
- Abstract要約: NextLocMoEは、大きな言語モデル(LLM)上に構築され、デュアルレベルのMixture-of-Experts(MoE)設計を中心に構築された、新しいフレームワークである。
我々のアーキテクチャは2つの特別なモジュールで構成されている: ロケーションセマンティックス MoE は、位置の豊富な機能的意味をエンコードする埋め込みレベルで動作し、パーソナライズされた MoE は、トランスフォーマーのバックボーンに埋め込まれ、個々のユーザーモビリティパターンに動的に適応する。
- 参考スコア(独自算出の注目度): 20.726107072683575
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Next location prediction plays a critical role in understanding human mobility patterns. However, existing approaches face two core limitations: (1) they fall short in capturing the complex, multi-functional semantics of real-world locations; and (2) they lack the capacity to model heterogeneous behavioral dynamics across diverse user groups. To tackle these challenges, we introduce NextLocMoE, a novel framework built upon large language models (LLMs) and structured around a dual-level Mixture-of-Experts (MoE) design. Our architecture comprises two specialized modules: a Location Semantics MoE that operates at the embedding level to encode rich functional semantics of locations, and a Personalized MoE embedded within the Transformer backbone to dynamically adapt to individual user mobility patterns. In addition, we incorporate a history-aware routing mechanism that leverages long-term trajectory data to enhance expert selection and ensure prediction stability. Empirical evaluations across several real-world urban datasets show that NextLocMoE achieves superior performance in terms of predictive accuracy, cross-domain generalization, and interpretability
- Abstract(参考訳): 次の位置予測は、人間の移動パターンを理解する上で重要な役割を果たす。
しかし、既存のアプローチでは、(1)現実世界の複雑な多機能セマンティクスを捉えるのに足りず、(2)多様なユーザーグループにまたがる不均一な振る舞いのダイナミクスをモデル化する能力が欠如している。
これらの課題に対処するために、我々はNextLocMoEを紹介します。これは、大きな言語モデル(LLM)の上に構築され、二重レベルのMixture-of-Experts(MoE)設計を中心に構築された新しいフレームワークです。
我々のアーキテクチャは2つの特別なモジュールで構成されている: ロケーションセマンティックス MoE は、位置の豊富な機能的意味をエンコードする埋め込みレベルで動作し、パーソナライズされた MoE は、トランスフォーマーのバックボーンに埋め込まれ、個々のユーザーモビリティパターンに動的に適応する。
さらに, 長期軌跡データを利用した履歴認識型ルーティング機構を導入し, 専門家の選択性を高め, 予測安定性を確保する。
NextLocMoEは、予測精度、クロスドメインの一般化、解釈可能性の点で優れた性能を発揮することを示す。
関連論文リスト
- TrajMoE: Spatially-Aware Mixture of Experts for Unified Human Mobility Modeling [10.338272381612112]
都市間モビリティモデリングのための統一的でスケーラブルなモデルであるTrajMoEを提案する。
TrajMoEは,(1)都市間における空間意味論の不整合,(2)多様な都市移動パターンの2つの課題に対処する。
広範な実験により、TrajMoEは競争力基盤モデルよりも27%の相対的な改善を達成している。
論文 参考訳(メタデータ) (2025-05-24T12:17:47Z) - UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines [64.84631333071728]
本稿では,時間的モデリングのためのトランスフォーマーベースの統合フレームワークであるbfUnistageを紹介する。
我々の研究は、タスク固有の視覚テキストが時間学習のための一般化可能なモデルを構築することができることを示した。
また、時間的ダイナミクスを明示的に組み込むための時間的モジュールも導入する。
論文 参考訳(メタデータ) (2025-03-26T17:33:23Z) - TrajGEOS: Trajectory Graph Enhanced Orientation-based Sequential Network for Mobility Prediction [10.876862361004944]
次位置予測タスクのための textbfTrajectory textbfGraph textbfEnhanced textbfOrientation-based textbfSequential network (TrajGEOS) を提案する。
論文 参考訳(メタデータ) (2024-12-26T07:18:38Z) - A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
マルチモーダル・ファンデーション・モデルは視覚と言語を交わす多くのアプリケーションに役立っている。
モデルを更新し続けるために、継続事前トレーニングの研究は主に、大規模な新しいデータに対する頻度の低い、差別的な更新、あるいは頻繁に行われるサンプルレベルの更新のシナリオを探求する。
本稿では,FoMo-in-Flux(FoMo-in-Flux)について紹介する。
論文 参考訳(メタデータ) (2024-08-26T17:59:01Z) - AgentMove: A Large Language Model based Agentic Framework for Zero-shot Next Location Prediction [7.007450097312181]
本稿では,汎用的な次の位置予測を実現するためのエージェント予測フレームワークであるAgentMoveを紹介する。
AgentMoveでは、まず移動予測タスクを分解し、個々の移動パターンマイニングのための時空間記憶を含む特定のモジュールを設計する。
2つの異なる情報源によるモビリティデータを用いた実験により、AgentMoveは12の指標のうち8つの指標のうち3.33%から8.57%を突破した。
論文 参考訳(メタデータ) (2024-08-26T02:36:55Z) - FedMoE: Personalized Federated Learning via Heterogeneous Mixture of Experts [4.412721048192925]
我々は、データ不均一性に対処するための効率的パーソナライズされたFederated LearningフレームワークであるFedMoEを紹介する。
FedMoEは2つの微調整段階から構成されており、第1段階では、観測されたアクティベーションパターンに基づいて探索を行うことで問題を単純化する。
第2段階では、これらのサブモデルはさらなるトレーニングのためにクライアントに配布され、サーバ集約のために返される。
論文 参考訳(メタデータ) (2024-08-21T03:16:12Z) - DiM-Gesture: Co-Speech Gesture Generation with Adaptive Layer Normalization Mamba-2 framework [2.187990941788468]
生音声のみから、高度にパーソナライズされた3Dフルボディジェスチャーを作成するために作られた生成モデル。
Modelは、Mambaベースのファジィ特徴抽出器と非自己回帰適応層正規化(AdaLN)Mamba-2拡散アーキテクチャを統合している。
論文 参考訳(メタデータ) (2024-08-01T08:22:47Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
FSCIL(Few-shot class-incremental Learning)は、最小限のトレーニングサンプルを持つモデルに新しいクラスを統合するという課題に直面している。
従来の手法では、固定パラメータ空間に依存する静的適応を広く採用し、逐次到着するデータから学習する。
本稿では、動的適応のための中間特徴に基づいてプロジェクションパラメータを動的に調整する2つの選択型SSMプロジェクタを提案する。
論文 参考訳(メタデータ) (2024-07-08T17:09:39Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
本稿では,新しいSSCフレームワーク - Adrial Modality Modulation Network (AMMNet)を提案する。
AMMNetは、モダリティ間の勾配流の相互依存性を可能にするクロスモーダル変調と、動的勾配競争を利用するカスタマイズされた逆トレーニングスキームの2つのコアモジュールを導入している。
AMMNetは最先端のSSC法よりも大きなマージンで優れていた。
論文 参考訳(メタデータ) (2024-03-12T11:48:49Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
モジュール構造とテンポラル構造の両方を同時に活用できる動的構造を利用するための一歩を踏み出します。
我々のモデルは利用可能なビューの数に対して堅牢であり、追加のトレーニングなしで新しいタスクに一般化できる。
論文 参考訳(メタデータ) (2020-07-13T17:44:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。