論文の概要: Reinforcing Video Reasoning with Focused Thinking
- arxiv url: http://arxiv.org/abs/2505.24718v1
- Date: Fri, 30 May 2025 15:42:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:53.044957
- Title: Reinforcing Video Reasoning with Focused Thinking
- Title(参考訳): 集中型思考によるビデオ推論の強化
- Authors: Jisheng Dang, Jingze Wu, Teng Wang, Xuanhui Lin, Nannan Zhu, Hongbo Chen, Wei-Shi Zheng, Meng Wang, Tat-Seng Chua,
- Abstract要約: 新たなフレームワークは、集中した思考と深い報酬の粒度による視覚的推論を強化する。
我々は,高情報密度のトークンを優先するトークン重み付け機構を採用している。
シングルチョイスからマルチチョイスQAタスクにシフトすることで、RLトレーニングを再構築する。
- 参考スコア(独自算出の注目度): 65.85683941058916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in reinforcement learning, particularly through Group Relative Policy Optimization (GRPO), have significantly improved multimodal large language models for complex reasoning tasks. However, two critical limitations persist: 1) they often produce unfocused, verbose reasoning chains that obscure salient spatiotemporal cues and 2) binary rewarding fails to account for partially correct answers, resulting in high reward variance and inefficient learning. In this paper, we propose TW-GRPO, a novel framework that enhances visual reasoning with focused thinking and dense reward granularity. Specifically, we employs a token weighting mechanism that prioritizes tokens with high informational density (estimated by intra-group variance), suppressing redundant tokens like generic reasoning prefixes. Furthermore, we reformulate RL training by shifting from single-choice to multi-choice QA tasks, where soft rewards enable finer-grained gradient estimation by distinguishing partial correctness. Additionally, we propose question-answer inversion, a data augmentation strategy to generate diverse multi-choice samples from existing benchmarks. Experiments demonstrate state-of-the-art performance on several video reasoning and general understanding benchmarks. Notably, TW-GRPO achieves 50.4\% accuracy on CLEVRER (18.8\% improvement over Video-R1) and 65.8\% on MMVU. Our codes are available at \href{https://github.com/longmalongma/TW-GRPO}{https://github.com/longmalongma/TW-GRPO}.
- Abstract(参考訳): 強化学習の最近の進歩、特にグループ相対政策最適化(GRPO)は、複雑な推論タスクのための多モーダルな大規模言語モデルを大幅に改善している。
しかし、2つの限界が続く。
1)無焦点で冗長な推論連鎖をしばしば生み出すが、これは時空間的空間的手がかりを曖昧にし、
2)二分報酬は部分的に正解を考慮せず,高い報酬分散と非効率学習をもたらす。
本稿では,集中的な思考と深い報酬の粒度で視覚的推論を強化する新しいフレームワークであるTW-GRPOを提案する。
具体的には、高い情報密度のトークンを優先順位付けするトークン重み付け機構(グループ内分散によって推定される)を採用し、ジェネリック推論プレフィックスのような冗長なトークンを抑える。
さらに,単一選択から多選択QAタスクへシフトすることでRLトレーニングを再構築し,ソフト報酬は部分的正しさを識別してよりきめ細かな勾配推定を可能にする。
さらに、既存のベンチマークから多様なマルチ選択サンプルを生成するためのデータ拡張戦略であるQ&Aインバージョンを提案する。
実験では、いくつかのビデオ推論と一般的な理解ベンチマークで最先端のパフォーマンスを示す。
特に、TW-GRPOはCLEVRER(ビデオR1)で50.4\%、MMVUで65.8\%の精度を達成している。
我々のコードは \href{https://github.com/longmalongma/TW-GRPO}{https://github.com/longmalongma/TW-GRPO} で利用可能です。
関連論文リスト
- From Sufficiency to Reflection: Reinforcement-Guided Thinking Quality in Retrieval-Augmented Reasoning for LLMs [13.410543801811992]
本稿では既存のRAG推論モデルを分析し,3つの障害パターンを同定する。
本稿では,思考検索と多次元報酬システムを用いた新しいフレームワークTIRESRAG-R1を提案する。
4つのマルチホップQAデータセットの実験により、TIRESRAG-R1はRAG法よりも優れており、シングルホップタスクに適していることが示された。
論文 参考訳(メタデータ) (2025-07-30T14:29:44Z) - Perception-Aware Policy Optimization for Multimodal Reasoning [79.56070395437898]
現在のマルチモーダル推論における誤りの主な原因は、視覚入力の知覚にある。
提案するPAPOは,モデルが推論を学習しながら知覚を学習することを奨励する,新しいポリシー勾配アルゴリズムである。
知覚誤りの30.5%が有意に減少し,PAPOによる知覚能力の向上が示唆された。
論文 参考訳(メタデータ) (2025-07-08T23:22:34Z) - GRPO-CARE: Consistency-Aware Reinforcement Learning for Multimodal Reasoning [53.894789613838654]
我々は、複雑な実世界のビデオにバランスの取れた知覚と推論を必要とするベンチマークであるSEED-Bench-R1を紹介する。
SEED-Bench-R1を用いて、標準GRPOは解の精度を向上する一方で、推論ステップと解の論理的コヒーレンスを57.9%の一貫性で減少させる。
応答の正しさと推論コヒーレンスの両方を明示的な監督なしに最適化する整合性を考慮したRLフレームワークGRPO-CAREを提案する。
論文 参考訳(メタデータ) (2025-06-19T08:49:13Z) - Fractional Reasoning via Latent Steering Vectors Improves Inference Time Compute [57.16286134405821]
本稿では,推論時の推論強度を連続的に制御するフレームワークであるフラクショナル推論を提案する。
提案手法は, より深い推論を伴う潜在ステアリングベクトルを抽出し, 調整可能なスケーリング係数で再適用することによって機能する。
GSM8K、MATH500、GPQAの実験により、フラクショナル推論は様々な推論タスクやモデルのパフォーマンスを一貫して改善することを示した。
論文 参考訳(メタデータ) (2025-06-18T21:15:59Z) - Rewarding the Unlikely: Lifting GRPO Beyond Distribution Sharpening [36.81125165911328]
強化学習は、言語モデルの推論能力を改善する主要な要因として現れています。
本稿では,現在の強化学習アルゴリズムが,すでに解いている問題に関するベースモデルの分布を単に研ぎ澄ましているだけかどうかを考察する。
差分報酬はランクバイアスを緩和し、合成定理と実定理の両方の証明設定において、多種多様な$N$でpass@N$を改善することを示す。
論文 参考訳(メタデータ) (2025-06-03T01:15:15Z) - Observe-R1: Unlocking Reasoning Abilities of MLLMs with Dynamic Progressive Reinforcement Learning [3.364797975300393]
マルチモーダル大規模言語モデル(MLLM)の推論能力向上を目的とした新しいフレームワークであるObserve-R1を提案する。
我々は,RL学習におけるデータサンプルの難易度と難易度に応じて整理し,サンプル化したNeuraLadderデータセットを構築した。
Qwen2.5-VL-3B と Qwen2.5-VL-7B のニューララダーデータセットから得られた20kサンプルによる実験により、Observe-R1 は推論と一般的なベンチマークの両方において、より大きな推論モデルよりも優れていることが示された。
論文 参考訳(メタデータ) (2025-05-18T14:08:03Z) - DisCO: Reinforcing Large Reasoning Models with Discriminative Constrained Optimization [55.06360285372418]
グループ相対政策最適化は大規模推論モデル(LRM)の強化学習手法である
本研究では,2次報酬設定の下でGRPOの目的を解析し,質問レベルの難易度バイアスの固有の制限を明らかにする。
差別学習の原則を基礎として, LRMの強化のための新たな差別的制約付き最適化フレームワークを導入する。
論文 参考訳(メタデータ) (2025-05-18T11:08:32Z) - Token-Efficient RL for LLM Reasoning [0.02488650627593658]
本稿では,大規模言語モデル (LLM) において,厳密なメモリと計算限界下での推論に適した強化学習戦略を提案する。
ベースラインサブトラクションを用いた早期ポリシー勾配法に基づいて,出力トークンの小さな情報サブセット上で動作する批判のない手法を設計する。
提案手法は,SVAMPベンチマークの精度を46%から70%以上に向上し,マルチ桁乗算において高い性能を示した。
論文 参考訳(メタデータ) (2025-04-29T14:58:43Z) - Compile Scene Graphs with Reinforcement Learning [69.36723767339001]
次世代予測は大規模言語モデル(LLM)の訓練の基本原理である
本稿では,マルチモーダルLLM(M-LLM)であるR1-SGGを紹介する。
私たちは、Hard Recall、Hard Recall+Relax、Soft Recallの3つのリコールベースのバリエーションを含む、グラフ中心の報酬セットを設計します。
論文 参考訳(メタデータ) (2025-04-18T10:46:22Z) - Self-Training Elicits Concise Reasoning in Large Language Models [23.475414693530965]
チェーン・オブ・シント(CoT)推論により、中間トークンによるさらなる計算を大規模言語モデル(LLM)が利用できるようになった。
自己生成した簡潔な推論経路を利用する簡単な微調整法を提案する。
提案手法は,GSM8KおよびMATH上の5つのモデルファミリに対して,平均精度を維持しつつ,出力トークンの30%削減を実現する。
論文 参考訳(メタデータ) (2025-02-27T14:14:50Z) - Not all tokens are created equal: Perplexity Attention Weighted Networks for AI generated text detection [49.15148871877941]
大規模言語モデル(LLM)の検出に理論的に魅力的なアプローチを提供する次点分布出力
本稿では,LLMの最後の隠蔽状態を用いて,列長の次トーケン分布のメトリクスに基づく一連の特徴量の重み付けを行うパープレキシティ注意重み付けネットワーク(PAWN)を提案する。
PAWNは、トレーニング可能なパラメータのごく一部を持つ最強のベースラインよりも、競争力があり、より優れた分散性能を示している。
論文 参考訳(メタデータ) (2025-01-07T17:00:49Z) - DORB: Dynamically Optimizing Multiple Rewards with Bandits [101.68525259222164]
政策に基づく強化学習は、言語生成タスクにおいて、微分不可能な評価指標を最適化するための有望なアプローチであることが証明されている。
We use the Exp3 algorithm for bandit and formulate two approach for bandit rewards: (1) Single Multi-reward Bandit (SM-Bandit), (2) Hierarchical Multi-reward Bandit (HM-Bandit)
我々は,2つの重要なNLGタスクにおいて,様々な自動計測と人的評価を通じて,我々のアプローチの有効性を実証的に示す。
論文 参考訳(メタデータ) (2020-11-15T21:57:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。