論文の概要: Diffusion-Based Symbolic Regression
- arxiv url: http://arxiv.org/abs/2505.24776v1
- Date: Fri, 30 May 2025 16:39:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:53.075078
- Title: Diffusion-Based Symbolic Regression
- Title(参考訳): 拡散に基づくシンボリック回帰
- Authors: Zachary Bastiani, Robert M. Kirby, Jacob Hochhalter, Shandian Zhe,
- Abstract要約: 拡散は生成モデリングの強力なフレームワークとして登場し、画像や音声合成などのアプリケーションで顕著な成功を収めている。
本稿では,新しい拡散に基づくシンボリック回帰手法を提案する。
我々は,多様かつ高品質な方程式を生成するために,ランダムマスクに基づく拡散・分極プロセスを構築した。
- 参考スコア(独自算出の注目度): 20.941908494137806
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Diffusion has emerged as a powerful framework for generative modeling, achieving remarkable success in applications such as image and audio synthesis. Enlightened by this progress, we propose a novel diffusion-based approach for symbolic regression. We construct a random mask-based diffusion and denoising process to generate diverse and high-quality equations. We integrate this generative processes with a token-wise Group Relative Policy Optimization (GRPO) method to conduct efficient reinforcement learning on the given measurement dataset. In addition, we introduce a long short-term risk-seeking policy to expand the pool of top-performing candidates, further enhancing performance. Extensive experiments and ablation studies have demonstrated the effectiveness of our approach.
- Abstract(参考訳): 拡散は生成モデリングの強力なフレームワークとして登場し、画像や音声合成などのアプリケーションで顕著な成功を収めている。
この進歩に着目し、シンボル回帰に対する新しい拡散に基づくアプローチを提案する。
我々は,多様かつ高品質な方程式を生成するために,ランダムマスクに基づく拡散・分極プロセスを構築した。
我々は,この生成過程をトークンワイドグループ相対政策最適化(GRPO)法と統合し,与えられた測定データセット上で効率的な強化学習を行う。
さらに,トップパフォーマンス候補のプールを拡大し,さらなるパフォーマンス向上を図るために,長期的リスク探究政策を導入する。
大規模な実験とアブレーション研究により,本手法の有効性が実証された。
関連論文リスト
- InstaRevive: One-Step Image Enhancement via Dynamic Score Matching [66.97989469865828]
InstaReviveは、強力な生成能力を活用するためにスコアベースの拡散蒸留を利用する画像強調フレームワークである。
私たちのフレームワークは、さまざまな課題やデータセットにまたがって、高品質で視覚的に魅力的な結果を提供します。
論文 参考訳(メタデータ) (2025-04-22T01:19:53Z) - Arbitrary-steps Image Super-resolution via Diffusion Inversion [68.78628844966019]
本研究では,拡散インバージョンに基づく新しい画像超解像(SR)手法を提案する。
本研究では,拡散モデルの中間状態を構築するための部分雑音予測戦略を設計する。
トレーニングが完了すると、このノイズ予測器を使用して、拡散軌道に沿ってサンプリングプロセスを部分的に初期化し、望ましい高分解能結果を生成する。
論文 参考訳(メタデータ) (2024-12-12T07:24:13Z) - Diffusion Spectral Representation for Reinforcement Learning [17.701625371409644]
本稿では,表現学習の観点からの強化学習に拡散モデルの柔軟性を活用することを提案する。
拡散モデルとエネルギーベースモデルとの接続を利用して拡散スペクトル表現(Diff-SR)を開発する。
Diff-SRは、拡散モデルからのサンプリングの難易度と推論コストを明示的に回避しつつ、効率的なポリシー最適化と実用的なアルゴリズムを実現する方法を示す。
論文 参考訳(メタデータ) (2024-06-23T14:24:14Z) - Score Regularized Policy Optimization through Diffusion Behavior [25.926641622408752]
オフライン強化学習の最近の進歩は拡散モデリングの潜在可能性を明らかにしている。
本稿では,批判モデルと事前学習した拡散行動モデルから,効率的な決定論的推論ポリシーを抽出することを提案する。
本手法は,移動作業における各種拡散法と比較して,動作サンプリング速度を25倍以上に向上させる。
論文 参考訳(メタデータ) (2023-10-11T08:31:26Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Towards Multimodal Response Generation with Exemplar Augmentation and
Curriculum Optimization [73.45742420178196]
本稿では,高度化とカリキュラム最適化を併用した,新しいマルチモーダル応答生成フレームワークを提案する。
我々のモデルは多様性と妥当性の点で強いベースラインに比べて大幅に改善されている。
論文 参考訳(メタデータ) (2020-04-26T16:29:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。