論文の概要: Lightweight Relational Embedding in Task-Interpolated Few-Shot Networks for Enhanced Gastrointestinal Disease Classification
- arxiv url: http://arxiv.org/abs/2505.24792v1
- Date: Fri, 30 May 2025 16:54:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:53.08676
- Title: Lightweight Relational Embedding in Task-Interpolated Few-Shot Networks for Enhanced Gastrointestinal Disease Classification
- Title(参考訳): 消化器疾患診断のためのタスク補間Few-Shotネットワークにおける軽量リレーショナルエンベディング
- Authors: Xinliu Zhong, Leo Hwa Liang, Angela S. Koh, Yeo Si Yong,
- Abstract要約: 大腸癌の検出は、患者の生存率を高めるために重要である。
大腸内視鏡は、適切な高品質の内視鏡画像を取得することに依存する。
Few-Shot Learning アーキテクチャにより、我々のモデルは、目に見えないきめ細かな内視鏡画像パターンに迅速に適応できる。
精度は90.1%,精度は0.845,リコールは0.942,F1スコアは0.891であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional diagnostic methods like colonoscopy are invasive yet critical tools necessary for accurately diagnosing colorectal cancer (CRC). Detection of CRC at early stages is crucial for increasing patient survival rates. However, colonoscopy is dependent on obtaining adequate and high-quality endoscopic images. Prolonged invasive procedures are inherently risky for patients, while suboptimal or insufficient images hamper diagnostic accuracy. These images, typically derived from video frames, often exhibit similar patterns, posing challenges in discrimination. To overcome these challenges, we propose a novel Deep Learning network built on a Few-Shot Learning architecture, which includes a tailored feature extractor, task interpolation, relational embedding, and a bi-level routing attention mechanism. The Few-Shot Learning paradigm enables our model to rapidly adapt to unseen fine-grained endoscopic image patterns, and the task interpolation augments the insufficient images artificially from varied instrument viewpoints. Our relational embedding approach discerns critical intra-image features and captures inter-image transitions between consecutive endoscopic frames, overcoming the limitations of Convolutional Neural Networks (CNNs). The integration of a light-weight attention mechanism ensures a concentrated analysis of pertinent image regions. By training on diverse datasets, the model's generalizability and robustness are notably improved for handling endoscopic images. Evaluated on Kvasir dataset, our model demonstrated superior performance, achieving an accuracy of 90.1\%, precision of 0.845, recall of 0.942, and an F1 score of 0.891. This surpasses current state-of-the-art methods, presenting a promising solution to the challenges of invasive colonoscopy by optimizing CRC detection through advanced image analysis.
- Abstract(参考訳): 大腸内視鏡のような従来の診断法は、大腸癌(CRC)の正確な診断に必要な侵襲的だが重要なツールである。
早期のCRCの検出は、患者の生存率を高めるために重要である。
しかし,大腸内視鏡検査は適切な高画質の内視鏡画像を得ることに依存している。
長期の侵襲的手術は、患者にとって本質的に危険であるが、最適または不十分な画像は診断精度を損なう。
これらの画像は、典型的にはビデオフレームから派生したもので、しばしば同様のパターンを示し、差別の課題を提起する。
これらの課題を克服するために,Few-Shot Learningアーキテクチャ上に構築された新しいDeep Learningネットワークを提案する。
Few-Shot Learning パラダイムにより,目立たない微細な内視鏡画像パターンに迅速に適応することが可能となり,課題補間によって様々な機器の観点から,不十分な画像が人工的に増大する。
我々のリレーショナル埋め込み手法は、画像内重要な特徴を識別し、連続する内視鏡フレーム間の画像間遷移をキャプチャし、畳み込みニューラルネットワーク(CNN)の限界を克服する。
軽量アテンション機構の統合により、関連する画像領域の集中分析が保証される。
多様なデータセットのトレーニングによって、モデルの一般化性と堅牢性は、内視鏡画像を扱うために顕著に改善される。
Kvasir データセットを用いて評価したところ,精度は 90.1\%,精度は 0.845,リコールは 0.942,F1 スコアは 0.891 であった。
これは現在の最先端手法を超越し、高度な画像解析によるCRC検出を最適化することにより、侵襲的大腸内視鏡の課題に対する有望な解決策を提供する。
関連論文リスト
- Bayesian Deep Learning Approaches for Uncertainty-Aware Retinal OCT Image Segmentation for Multiple Sclerosis [0.0]
光コヒーレンス・トモグラフィ(OCT)は眼科、心臓科、神経学の貴重な知見を提供する。
OCTを用いた眼科医にとって重要な課題は、スキャン内の網膜層のデライン化である。
深層学習を用いたデライン作成の自動化に向けた従来の取り組みは、臨床医や統計学者の獲得に困難を呈している。
論文 参考訳(メタデータ) (2025-05-17T15:56:17Z) - Metrics that matter: Evaluating image quality metrics for medical image generation [48.85783422900129]
本研究は、脳MRIデータを用いて、一般的に使用される非参照画像品質指標を包括的に評価する。
本研究は, ノイズ, 分布変化, および臨床的に関係のある不正確さを模倣した形態的変化を含む, 様々な課題に対する計量感度を評価する。
論文 参考訳(メタデータ) (2025-05-12T01:57:25Z) - DCAT: Dual Cross-Attention Fusion for Disease Classification in Radiological Images with Uncertainty Estimation [0.0]
本稿では,医用画像解析のための新しい二重対向核融合モデルを提案する。
機能統合と解釈可能性における重要な課題に対処する。
提案されたモデルはAUCの99.75%、100%、99.93%、98.69%、AUPRの99.81%、100%、99.97%、96.36%をそれぞれコビッド19、結核、肺炎胸部X線画像、網膜CT画像で達成した。
論文 参考訳(メタデータ) (2025-03-14T20:28:20Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Multiscale Latent Diffusion Model for Enhanced Feature Extraction from Medical Images [5.395912799904941]
CTスキャナーモデルと取得プロトコルのバリエーションは、抽出した放射能特性に有意な変動をもたらす。
LTDiff++は医療画像の特徴抽出を強化するために設計されたマルチスケール潜在拡散モデルである。
論文 参考訳(メタデータ) (2024-10-05T02:13:57Z) - Enhanced Sharp-GAN For Histopathology Image Synthesis [63.845552349914186]
病理組織像合成は、正確ながん検出のためのディープラーニングアプローチの訓練において、データ不足の問題に対処することを目的としている。
核トポロジと輪郭正則化を用いて合成画像の品質を向上させる新しい手法を提案する。
提案手法は、Sharp-GANを2つのデータセット上の4つの画像品質指標すべてで上回る。
論文 参考訳(メタデータ) (2023-01-24T17:54:01Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
我々は3つの公開データセットの実験を行い、ディープニューラルネットワークにおける異なる前処理ステップの効果を評価する。
その結果、最も一般的な標準化手順は、ネットワーク性能に何の価値も与えないことが示されている。
画像の規格化に伴う信号分散の低減のため,画像強度正規化手法はモデル精度に寄与しない。
論文 参考訳(メタデータ) (2022-04-11T17:29:36Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。