How much do language models memorize?
- URL: http://arxiv.org/abs/2505.24832v2
- Date: Mon, 02 Jun 2025 14:13:41 GMT
- Title: How much do language models memorize?
- Authors: John X. Morris, Chawin Sitawarin, Chuan Guo, Narine Kokhlikyan, G. Edward Suh, Alexander M. Rush, Kamalika Chaudhuri, Saeed Mahloujifar,
- Abstract summary: We separate memorization into two components: textitunintended memorization'' and textitgeneralization''<n>When we completely eliminate generalization, we can compute the total memorization, which provides an estimate of model capacity.<n>We train language models on datasets of increasing size and observe that models memorize until their capacity fills, at which point grokking'' begins, and unintended memorization decreases as models begin to generalize.
- Score: 104.22411031699127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new method for estimating how much a model ``knows'' about a datapoint and use it to measure the capacity of modern language models. Prior studies of language model memorization have struggled to disentangle memorization from generalization. We formally separate memorization into two components: \textit{unintended memorization}, the information a model contains about a specific dataset, and \textit{generalization}, the information a model contains about the true data-generation process. When we completely eliminate generalization, we can compute the total memorization, which provides an estimate of model capacity: our measurements estimate that GPT-style models have a capacity of approximately 3.6 bits per parameter. We train language models on datasets of increasing size and observe that models memorize until their capacity fills, at which point ``grokking'' begins, and unintended memorization decreases as models begin to generalize. We train hundreds of transformer language models ranging from $500K$ to $1.5B$ parameters and produce a series of scaling laws relating model capacity and data size to membership inference.
Related papers
- Too Big to Think: Capacity, Memorization, and Generalization in Pre-Trained Transformers [0.0]
We investigate the relationship between memorization and generalization in large language models.<n>Small models extrapolate to unseen arithmetic cases but fail to memorize facts, while larger models memorize but fail to extrapolate.<n>Findings suggest that pre-training may intrinsically favor one learning mode over the other.
arXiv Detail & Related papers (2025-06-10T14:49:33Z) - Causal Estimation of Memorisation Profiles [58.20086589761273]
Understanding memorisation in language models has practical and societal implications.
Memorisation is the causal effect of training with an instance on the model's ability to predict that instance.
This paper proposes a new, principled, and efficient method to estimate memorisation based on the difference-in-differences design from econometrics.
arXiv Detail & Related papers (2024-06-06T17:59:09Z) - Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws [51.68385617116854]
Scaling laws describe the relationship between the size of language models and their capabilities.
We focus on factual knowledge represented as domains, such as (USA, capital, Washington D.C.) from a Wikipedia page.
A 7B model can store 14B bits of knowledge, surpassing the English Wikipedia and textbooks combined.
arXiv Detail & Related papers (2024-04-08T11:11:31Z) - Quantifying and Analyzing Entity-level Memorization in Large Language
Models [4.59914731734176]
Large language models (LLMs) have been proven capable of memorizing their training data.
Privacy risks arising from memorization have attracted increasing attention.
We propose a fine-grained, entity-level definition to quantify memorization with conditions and metrics closer to real-world scenarios.
arXiv Detail & Related papers (2023-08-30T03:06:47Z) - Emergent and Predictable Memorization in Large Language Models [23.567027014457775]
Memorization, or the tendency of large language models to output entire sequences from their training data verbatim, is a key concern for safely deploying language models.
We seek to predict which sequences will be memorized before a large model's full train-time by extrapolating the memorization behavior of lower-compute trial runs.
We provide further novel discoveries on the distribution of memorization scores across models and data.
arXiv Detail & Related papers (2023-04-21T17:58:31Z) - Memorization Without Overfitting: Analyzing the Training Dynamics of
Large Language Models [64.22311189896888]
We study exact memorization in causal and masked language modeling, across model sizes and throughout the training process.
Surprisingly, we show that larger models can memorize a larger portion of the data before over-fitting and tend to forget less throughout the training process.
arXiv Detail & Related papers (2022-05-22T07:43:50Z) - Quantifying Memorization Across Neural Language Models [61.58529162310382]
Large language models (LMs) have been shown to memorize parts of their training data, and when prompted appropriately, they will emit the memorized data verbatim.
This is undesirable because memorization violates privacy (exposing user data), degrades utility (repeated easy-to-memorize text is often low quality), and hurts fairness (some texts are memorized over others).
We describe three log-linear relationships that quantify the degree to which LMs emit memorized training data.
arXiv Detail & Related papers (2022-02-15T18:48:31Z) - Counterfactual Memorization in Neural Language Models [91.8747020391287]
Modern neural language models that are widely used in various NLP tasks risk memorizing sensitive information from their training data.
An open question in previous studies of language model memorization is how to filter out "common" memorization.
We formulate a notion of counterfactual memorization which characterizes how a model's predictions change if a particular document is omitted during training.
arXiv Detail & Related papers (2021-12-24T04:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.