From Invariant Representations to Invariant Data: Provable Robustness to Spurious Correlations via Noisy Counterfactual Matching
- URL: http://arxiv.org/abs/2505.24843v1
- Date: Fri, 30 May 2025 17:42:32 GMT
- Title: From Invariant Representations to Invariant Data: Provable Robustness to Spurious Correlations via Noisy Counterfactual Matching
- Authors: Ruqi Bai, Yao Ji, Zeyu Zhou, David I. Inouye,
- Abstract summary: Recent alternatives improve robustness by leveraging test-time data, but such data may be unavailable in practice.<n>We take a data-centric approach by leveraging invariant data pairs and noisy counterfactual matching.<n>We validate on a synthetic dataset and demonstrate on real-world benchmarks that linear probing on a pretrained backbone improves robustness.
- Score: 11.158961763380278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spurious correlations can cause model performance to degrade in new environments. Prior causality-inspired works aim to learn invariant representations (e.g., IRM) but typically underperform empirical risk minimization (ERM). Recent alternatives improve robustness by leveraging test-time data, but such data may be unavailable in practice. To address these issues, we take a data-centric approach by leveraging invariant data pairs, pairs of samples that would have the same prediction with the optimally robust classifier. We prove that certain counterfactual pairs will naturally satisfy this invariance property and introduce noisy counterfactual matching (NCM), a simple constraint-based method for leveraging invariant pairs for enhanced robustness, even with a small set of noisy pairs-in the ideal case, each pair can eliminate one spurious feature. For linear causal models, we prove that the test domain error can be upper bounded by the in-domain error and a term that depends on the counterfactuals' diversity and quality. We validate on a synthetic dataset and demonstrate on real-world benchmarks that linear probing on a pretrained backbone improves robustness.
Related papers
- Robust Gaussian Processes via Relevance Pursuit [17.39376866275623]
We propose and study a GP model that achieves robustness against sparse outliers by inferring data-point-specific noise levels.<n>We show, surprisingly, that the model can be parameterized such that the associated log marginal likelihood is strongly concave in the data-point-specific noise variances.
arXiv Detail & Related papers (2024-10-31T17:59:56Z) - Adapting to Shifting Correlations with Unlabeled Data Calibration [6.84735357291896]
Distribution shifts between sites can seriously degrade model performance since models are prone to exploiting unstable correlations.
We propose Generalized Prevalence Adjustment (GPA), a flexible method that adjusts model predictions to the shifting correlations between prediction target and confounders.
GPA can infer the interaction between target and confounders in new sites using unlabeled samples from those sites.
arXiv Detail & Related papers (2024-09-09T18:45:43Z) - ROTI-GCV: Generalized Cross-Validation for right-ROTationally Invariant Data [1.194799054956877]
Two key tasks in high-dimensional regularized regression are tuning the regularization strength for accurate predictions and estimating the out-of-sample risk.
We introduce a new framework, ROTI-GCV, for reliably performing cross-validation under challenging conditions.
arXiv Detail & Related papers (2024-06-17T15:50:00Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Faithful Heteroscedastic Regression with Neural Networks [2.2835610890984164]
Parametric methods that employ neural networks for parameter maps can capture complex relationships in the data.
We make two simple modifications to optimization to produce a heteroscedastic model with mean estimates that are provably as accurate as those from its homoscedastic counterpart.
Our approach provably retains the accuracy of an equally flexible mean-only model while also offering best-in-class variance calibration.
arXiv Detail & Related papers (2022-12-18T22:34:42Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Robust Bayesian Inference for Discrete Outcomes with the Total Variation
Distance [5.139874302398955]
Models of discrete-valued outcomes are easily misspecified if the data exhibit zero-inflation, overdispersion or contamination.
Here, we introduce a robust discrepancy-based Bayesian approach using the Total Variation Distance (TVD)
We empirically demonstrate that our approach is robust and significantly improves predictive performance on a range of simulated and real world data.
arXiv Detail & Related papers (2020-10-26T09:53:06Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.