論文の概要: AI Accelerators for Large Language Model In-ference: Architecture Analysis and Scaling Strategies
- arxiv url: http://arxiv.org/abs/2506.00008v1
- Date: Tue, 13 May 2025 20:21:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-08 12:40:08.603909
- Title: AI Accelerators for Large Language Model In-ference: Architecture Analysis and Scaling Strategies
- Title(参考訳): 大規模言語モデル推論のためのAIアクセラレータ:アーキテクチャ分析とスケーリング戦略
- Authors: Amit Sharma,
- Abstract要約: 大規模言語モデル(LLM)は推論のための特別なハードウェアの新しい波を駆動している。
本稿では,商用AIアクセラレータのワークロード中心,クロスアーキテクチャ性能に関する最初の研究について述べる。
- 参考スコア(独自算出の注目度): 10.520360508397237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of large-language models (LLMs) is driving a new wave of specialized hardware for inference. This paper presents the first workload-centric, cross-architectural performance study of commercial AI accelerators, spanning GPU-based chips, hybrid packages, and wafer-scale engines. We compare memory hierarchies, compute fabrics, and on-chip interconnects, and observe up to 3.7x performance variation across architectures as batch size and sequence length change. Four scaling techniques for trillion-parameter models are examined; expert parallelism offers an 8.4x parameter-to-compute advantage but incurs 2.1x higher latency variance than tensor parallelism. These findings provide quantitative guidance for matching workloads to accelerators and reveal architectural gaps that next-generation designs must address.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な成長は、推論のための特別なハードウェアの新しい波を駆動している。
本稿では、GPUベースのチップ、ハイブリッドパッケージ、ウェハスケールエンジンにまたがる商用AIアクセラレータの最初のワークロード中心のクロスアーキテクチャ性能研究について述べる。
メモリ階層,計算ファブリック,オンチップ相互接続を比較し,最大3.7倍の性能変化をバッチサイズやシーケンス長の変化として観測する。
専門的並列性は8.4倍のパラメータ・トゥ・コンピュテーションの利点を提供するが、テンソル並列性よりも2.1倍の遅延分散をもたらす。
これらの発見は、ワークロードをアクセラレータにマッチングするための定量的ガイダンスを提供し、次世代設計で対処すべきアーキテクチャ上のギャップを明らかにする。
関連論文リスト
- Understanding and Optimizing Multi-Stage AI Inference Pipelines [11.254219071373319]
HERMESは不均一な多段LPM推論実行シミュレータである。
HERMESは、以前のフレームワークとは異なり、複数のモデルを同時に実行する異種クライアントをサポートする。
我々は、推論ステージがエンドツーエンドのレイテンシ、ハイブリッドパイプラインの最適戦略、リモートKVキャッシュ検索のアーキテクチャ的影響について検討する。
論文 参考訳(メタデータ) (2025-04-14T00:29:49Z) - Systems and Algorithms for Convolutional Multi-Hybrid Language Models at Scale [68.6602625868888]
本稿では,2つの簡単な観測に基づいて,畳み込み型マルチハイブリッドアーキテクチャを提案する。
ハイブリッドモデルのオペレータは、インコンテキストリコール、マルチトークンリコール、圧縮などのトークン操作タスクにカスタマイズできる。
我々は、最適化されたトランスフォーマーの1.2倍から2.9倍、以前の世代のハイブリッドの1.1倍から1.4倍の速さでエンドツーエンドを訓練する。
論文 参考訳(メタデータ) (2025-02-25T19:47:20Z) - AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation [48.82264764771652]
本稿では,畳み込みブロックと変圧器ブロックを組み合わせたハイブリッドアーキテクチャAsCANを紹介する。
AsCANは、認識、セグメンテーション、クラス条件画像生成など、さまざまなタスクをサポートしている。
次に、同じアーキテクチャをスケールして、大規模なテキスト・イメージタスクを解決し、最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-11-07T18:43:17Z) - Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
トランスフォーマーアーキテクチャを備えた大規模言語モデル(LLM)を含む強力な基礎モデルは、ジェネレーティブAIの新たな時代を支えている。
モデルパラメータの数が数十億に達すると、実際のシナリオにおける推論コストと高いレイテンシーが排除される。
このチュートリアルでは、AIアクセラレータを用いた補完推論最適化テクニックに関する包括的な議論を行っている。
論文 参考訳(メタデータ) (2024-07-12T09:24:34Z) - Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
AI統合製品の製造者は、製品のパフォーマンス要件に適合するアクセラレータを選択するという、重大な課題に直面します。
抽象コンピュータアーキテクチャ記述言語(ACADL)は、コンピュータアーキテクチャブロック図の簡潔な形式化である。
本稿では,AIハードウェアアクセラレーションのモデル化にACADLを用いること,DNNのマッピングにACADL記述を使用し,タイミングシミュレーションのセマンティクスを解説し,性能評価結果の収集を行う。
論文 参考訳(メタデータ) (2024-01-30T19:27:16Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。