AI Accelerators for Large Language Model In-ference: Architecture Analysis and Scaling Strategies
- URL: http://arxiv.org/abs/2506.00008v1
- Date: Tue, 13 May 2025 20:21:20 GMT
- Title: AI Accelerators for Large Language Model In-ference: Architecture Analysis and Scaling Strategies
- Authors: Amit Sharma,
- Abstract summary: Large-language models (LLMs) are driving a new wave of specialized hardware for inference.<n>This paper presents the first workload-centric, cross-architectural performance study of commercial AI accelerators.
- Score: 10.520360508397237
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of large-language models (LLMs) is driving a new wave of specialized hardware for inference. This paper presents the first workload-centric, cross-architectural performance study of commercial AI accelerators, spanning GPU-based chips, hybrid packages, and wafer-scale engines. We compare memory hierarchies, compute fabrics, and on-chip interconnects, and observe up to 3.7x performance variation across architectures as batch size and sequence length change. Four scaling techniques for trillion-parameter models are examined; expert parallelism offers an 8.4x parameter-to-compute advantage but incurs 2.1x higher latency variance than tensor parallelism. These findings provide quantitative guidance for matching workloads to accelerators and reveal architectural gaps that next-generation designs must address.
Related papers
- Understanding and Optimizing Multi-Stage AI Inference Pipelines [11.254219071373319]
HERMES is a Heterogeneous Multi-stage LLM inference Execution Simulator.<n> HERMES supports heterogeneous clients executing multiple models concurrently unlike prior frameworks.<n>We explore the impact of reasoning stages on end-to-end latency, optimal strategies for hybrid pipelines, and the architectural implications of remote KV cache retrieval.
arXiv Detail & Related papers (2025-04-14T00:29:49Z) - Systems and Algorithms for Convolutional Multi-Hybrid Language Models at Scale [68.6602625868888]
We introduce convolutional multi-hybrid architectures, with a design grounded on two simple observations.<n>Operators in hybrid models can be tailored to token manipulation tasks such as in-context recall, multi-token recall, and compression.<n>We train end-to-end 1.2 to 2.9 times faster than optimized Transformers, and 1.1 to 1.4 times faster than previous generation hybrids.
arXiv Detail & Related papers (2025-02-25T19:47:20Z) - AsCAN: Asymmetric Convolution-Attention Networks for Efficient Recognition and Generation [48.82264764771652]
We introduce AsCAN -- a hybrid architecture, combining both convolutional and transformer blocks.
AsCAN supports a variety of tasks: recognition, segmentation, class-conditional image generation.
We then scale the same architecture to solve a large-scale text-to-image task and show state-of-the-art performance.
arXiv Detail & Related papers (2024-11-07T18:43:17Z) - Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI.
As the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios.
This tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators.
arXiv Detail & Related papers (2024-07-12T09:24:34Z) - Using the Abstract Computer Architecture Description Language to Model
AI Hardware Accelerators [77.89070422157178]
Manufacturers of AI-integrated products face a critical challenge: selecting an accelerator that aligns with their product's performance requirements.
The Abstract Computer Architecture Description Language (ACADL) is a concise formalization of computer architecture block diagrams.
In this paper, we demonstrate how to use the ACADL to model AI hardware accelerators, use their ACADL description to map DNNs onto them, and explain the timing simulation semantics to gather performance results.
arXiv Detail & Related papers (2024-01-30T19:27:16Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
We design a more capable parameter-sharing architecture based on matrix product operator (MPO)
MPO decomposition can reorganize and factorize the information of a parameter matrix into two parts.
Our architecture shares the central tensor across all layers for reducing the model size.
arXiv Detail & Related papers (2023-03-27T02:34:09Z) - LiteTransformerSearch: Training-free On-device Search for Efficient
Autoregressive Language Models [34.673688610935876]
We show that the latency and perplexity pareto-frontier can be found without need for any model training.
We evaluate our method, dubbed Lightweight Transformer Search (LTS), on diverse devices.
We show that the perplexity of Transformer-XL can be achieved with up to 2x lower latency.
arXiv Detail & Related papers (2022-03-04T02:10:43Z) - Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained
Language Models [68.9288651177564]
We present a novel MoE architecture based on matrix product operators (MPO) from quantum many-body physics.
With the decomposed MPO structure, we can reduce the parameters of the original MoE architecture.
Experiments on the three well-known downstream natural language datasets based on GPT2 show improved performance and efficiency in increasing model capacity.
arXiv Detail & Related papers (2022-03-02T13:44:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.