MolTextNet: A Two-Million Molecule-Text Dataset for Multimodal Molecular Learning
- URL: http://arxiv.org/abs/2506.00009v1
- Date: Thu, 15 May 2025 19:50:11 GMT
- Title: MolTextNet: A Two-Million Molecule-Text Dataset for Multimodal Molecular Learning
- Authors: Yihan Zhu, Gang Liu, Eric Inae, Meng Jiang,
- Abstract summary: MolTextNet is a dataset of 2.5 million high-quality molecule-text pairs.<n>We create structured descriptions for 2.5 million molecules from ChEMBL35, with text over 10 times longer than prior datasets.
- Score: 15.083985098119202
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Small molecules are essential to drug discovery, and graph-language models hold promise for learning molecular properties and functions from text. However, existing molecule-text datasets are limited in scale and informativeness, restricting the training of generalizable multimodal models. We present MolTextNet, a dataset of 2.5 million high-quality molecule-text pairs designed to overcome these limitations. To construct it, we propose a synthetic text generation pipeline that integrates structural features, computed properties, bioactivity data, and synthetic complexity. Using GPT-4o-mini, we create structured descriptions for 2.5 million molecules from ChEMBL35, with text over 10 times longer than prior datasets. MolTextNet supports diverse downstream tasks, including property prediction and structure retrieval. Pretraining CLIP-style models with Graph Neural Networks and ModernBERT on MolTextNet yields improved performance, highlighting its potential for advancing foundational multimodal modeling in molecular science. Our dataset is available at https://huggingface.co/datasets/liuganghuggingface/moltextnet.
Related papers
- Property Enhanced Instruction Tuning for Multi-task Molecule Generation with Large Language Models [43.37148291436855]
We present a two-step framework PEIT to improve large language models for molecular-related tasks.<n>In the first step, we use textual descriptions, SMILES, and biochemical properties as multimodal inputs to pre-train a model called PEIT-GEN.<n>In the second step, we fine-tune existing open-source LLMs with the synthesized data, the resulting PEIT-LLM can handle molecule captioning, text-based molecule generation, molecular property prediction, and our newly proposed multi-constraint molecule generation tasks.
arXiv Detail & Related papers (2024-12-24T01:48:07Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
We introduce a multi-constraint molecular generation large language model, TSMMG, akin to a student.
To train TSMMG, we construct a large set of text-molecule pairs by extracting molecular knowledge from these 'teachers'
We experimentally show that TSMMG remarkably performs in generating molecules meeting complex, natural language-described property requirements.
arXiv Detail & Related papers (2024-03-20T02:15:55Z) - L+M-24: Building a Dataset for Language + Molecules @ ACL 2024 [46.478275217556586]
We detail the $textitL+M-24$ dataset created for the Language + Molecules Workshop shared task at ACL 2024.
In particular, $textitL+M-24$ is designed to focus on three key benefits of natural language in molecule design: compositionality, functionality, and abstraction.
arXiv Detail & Related papers (2024-02-22T20:11:24Z) - MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and
Uni-Modal Adapter [91.77292826067465]
Language Models (LMs) have demonstrated impressive molecule understanding ability on various 1D text-related tasks.
However, they inherently lack 2D graph perception.
We propose MolCA: Molecular Graph-Language Modeling with Cross-Modal Projector and Uni-Modal Adapter.
arXiv Detail & Related papers (2023-10-19T14:52:58Z) - GIT-Mol: A Multi-modal Large Language Model for Molecular Science with
Graph, Image, and Text [25.979382232281786]
We introduce GIT-Mol, a multi-modal large language model that integrates the Graph, Image, and Text information.
We achieve a 5%-10% accuracy increase in properties prediction and a 20.2% boost in molecule generation validity.
arXiv Detail & Related papers (2023-08-14T03:12:29Z) - MolXPT: Wrapping Molecules with Text for Generative Pre-training [141.0924452870112]
MolXPT is a unified language model of text and molecules pre-trained on SMILES wrapped by text.
MolXPT outperforms strong baselines of molecular property prediction on MoleculeNet.
arXiv Detail & Related papers (2023-05-18T03:58:19Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Multi-modal Molecule Structure-text Model for Text-based Retrieval and
Editing [107.49804059269212]
We present a multi-modal molecule structure-text model, MoleculeSTM, by jointly learning molecules' chemical structures and textual descriptions.
In experiments, MoleculeSTM obtains the state-of-the-art generalization ability to novel biochemical concepts.
arXiv Detail & Related papers (2022-12-21T06:18:31Z) - Translation between Molecules and Natural Language [43.518805086280466]
We present a self-supervised learning framework for pretraining models on a vast amount of unlabeled natural language text and molecule strings.
$textbfMolT5$ allows for new, useful, and challenging analogs of traditional vision-language tasks, such as molecule captioning and text-based de novo molecule generation.
arXiv Detail & Related papers (2022-04-25T17:48:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.