Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction
- URL: http://arxiv.org/abs/2302.02055v2
- Date: Fri, 6 Oct 2023 22:42:58 GMT
- Title: Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction
- Authors: Christopher Fifty, Joseph M. Paggi, Ehsan Amid, Jure Leskovec, Ron
Dror
- Abstract summary: We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
- Score: 53.06671763877109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot learning is a promising approach to molecular property prediction as
supervised data is often very limited. However, many important molecular
properties depend on complex molecular characteristics -- such as the various
3D geometries a molecule may adopt or the types of chemical interactions it can
form -- that are not explicitly encoded in the feature space and must be
approximated from low amounts of data. Learning these characteristics can be
difficult, especially for few-shot learning algorithms that are designed for
fast adaptation to new tasks. In this work, we develop molecular embeddings
that encode complex molecular characteristics to improve the performance of
few-shot molecular property prediction. Our approach leverages large amounts of
synthetic data, namely the results of molecular docking calculations, and a
multi-task learning paradigm to structure the embedding space. On multiple
molecular property prediction benchmarks, training from the embedding space
substantially improves Multi-Task, MAML, and Prototypical Network few-shot
learning performance. Our code is available at
https://github.com/cfifty/IGNITE.
Related papers
- MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
We construct a large-scale and precise molecular representation dataset of approximately 140,000 small molecules.
Our dataset offers significant physicochemical interpretability to guide model development and design.
We believe this dataset will serve as a more accurate and reliable benchmark for molecular representation learning.
arXiv Detail & Related papers (2024-06-13T02:50:23Z) - Multi-Modal Representation Learning for Molecular Property Prediction:
Sequence, Graph, Geometry [6.049566024728809]
Deep learning-based molecular property prediction has emerged as a solution to the resource-intensive nature of traditional methods.
In this paper, we propose a novel multi-modal representation learning model, called SGGRL, for molecular property prediction.
To ensure consistency across modalities, SGGRL is trained to maximize the similarity of representations for the same molecule while minimizing similarity for different molecules.
arXiv Detail & Related papers (2024-01-07T02:18:00Z) - From molecules to scaffolds to functional groups: building context-dependent molecular representation via multi-channel learning [10.025809630976065]
This paper introduces a novel pre-training framework that learns robust and generalizable chemical knowledge.
Our approach demonstrates competitive performance across various molecular property benchmarks.
arXiv Detail & Related papers (2023-11-05T23:47:52Z) - Interactive Molecular Discovery with Natural Language [69.89287960545903]
We propose the conversational molecular design, a novel task adopting natural language for describing and editing target molecules.
To better accomplish this task, we design ChatMol, a knowledgeable and versatile generative pre-trained model, enhanced by injecting experimental property information.
arXiv Detail & Related papers (2023-06-21T02:05:48Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - Graph-based Molecular Representation Learning [59.06193431883431]
Molecular representation learning (MRL) is a key step to build the connection between machine learning and chemical science.
Recently, MRL has achieved considerable progress, especially in methods based on deep molecular graph learning.
arXiv Detail & Related papers (2022-07-08T17:43:20Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
We present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer.
Experiments show that the learned molecular representation performs competitively, when compared to graph-based and fingerprint-based supervised learning baselines.
arXiv Detail & Related papers (2021-06-17T14:33:55Z) - Flexible dual-branched message passing neural network for quantum
mechanical property prediction with molecular conformation [16.08677447593939]
We propose a dual-branched neural network for molecular property prediction based on message-passing framework.
Our model learns heterogeneous molecular features with different scales, which are trained flexibly according to each prediction target.
arXiv Detail & Related papers (2021-06-14T10:00:39Z) - Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery [53.00288162642151]
We develop MoleculeKit, a suite of comprehensive machine learning tools spanning different computational models and molecular representations.
Built on these representations, MoleculeKit includes both deep learning and traditional machine learning methods for graph and sequence data.
Results on both online and offline antibiotics discovery and molecular property prediction tasks show that MoleculeKit achieves consistent improvements over prior methods.
arXiv Detail & Related papers (2020-12-02T02:09:31Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties.
We propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution.
arXiv Detail & Related papers (2020-10-05T20:18:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.