Hierarchical Bayesian Knowledge Tracing in Undergraduate Engineering Education
- URL: http://arxiv.org/abs/2506.00057v1
- Date: Thu, 29 May 2025 09:06:34 GMT
- Title: Hierarchical Bayesian Knowledge Tracing in Undergraduate Engineering Education
- Authors: Yiwei Sun,
- Abstract summary: This study demonstrates a rigorous yet interpretable statistical approach to quantify both skill difficulty and individual student abilities.<n>Using a large-scale dataset from an undergraduate Statics course, we identified clear patterns of skill mastery.<n>Our analysis reveals that certain concepts consistently present challenges, requiring targeted instructional support.
- Score: 5.416875842656737
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Educators teaching entry-level university engineering modules face the challenge of identifying which topics students find most difficult and how to support diverse student needs effectively. This study demonstrates a rigorous yet interpretable statistical approach -- hierarchical Bayesian modeling -- that leverages detailed student response data to quantify both skill difficulty and individual student abilities. Using a large-scale dataset from an undergraduate Statics course, we identified clear patterns of skill mastery and uncovered distinct student subgroups based on their learning trajectories. Our analysis reveals that certain concepts consistently present challenges, requiring targeted instructional support, while others are readily mastered and may benefit from enrichment activities. Importantly, the hierarchical Bayesian method provides educators with intuitive, reliable metrics without sacrificing predictive accuracy. This approach allows for data-informed decisions, enabling personalized teaching strategies to improve student engagement and success. By combining robust statistical methods with clear interpretability, this study equips educators with actionable insights to better support diverse learner populations.
Related papers
- Leveraging Knowledge Graphs and Large Language Models to Track and Analyze Learning Trajectories [0.0]
The study proposes a knowledge graph construction method based on large language models (LLMs)<n>It transforms learning materials into structured data and generates personalized learning trajectory graphs by analyzing students' test data.
arXiv Detail & Related papers (2025-04-13T16:27:15Z) - Explainable Few-shot Knowledge Tracing [48.877979333221326]
We propose a cognition-guided framework that can track the student knowledge from a few student records while providing natural language explanations.
Experimental results from three widely used datasets show that LLMs can perform comparable or superior to competitive deep knowledge tracing methods.
arXiv Detail & Related papers (2024-05-23T10:07:21Z) - Student Data Paradox and Curious Case of Single Student-Tutor Model: Regressive Side Effects of Training LLMs for Personalized Learning [25.90420385230675]
The pursuit of personalized education has led to the integration of Large Language Models (LLMs) in developing intelligent tutoring systems.
Our research uncovers a fundamental challenge in this approach: the Student Data Paradox''
This paradox emerges when LLMs, trained on student data to understand learner behavior, inadvertently compromise their own factual knowledge and reasoning abilities.
arXiv Detail & Related papers (2024-04-23T15:57:55Z) - Integrating AI and Learning Analytics for Data-Driven Pedagogical Decisions and Personalized Interventions in Education [0.2812395851874055]
This research study explores the conceptualization, development, and deployment of an innovative learning analytics tool.
By analyzing critical data points such as students' stress levels, curiosity, confusion, agitation, topic preferences, and study methods, the tool provides a comprehensive view of the learning environment.
This research underscores AI's role in shaping personalized, data-driven education.
arXiv Detail & Related papers (2023-12-15T06:00:26Z) - Enhancing Student Performance Prediction on Learnersourced Questions
with SGNN-LLM Synergy [11.735587384038753]
We introduce an innovative strategy that synergizes the potential of integrating Signed Graph Neural Networks (SGNNs) and Large Language Model (LLM) embeddings.
Our methodology employs a signed bipartite graph to comprehensively model student answers, complemented by a contrastive learning framework that enhances noise resilience.
arXiv Detail & Related papers (2023-09-23T23:37:55Z) - Reinforcement Learning Tutor Better Supported Lower Performers in a Math
Task [32.6507926764587]
Reinforcement learning could be a key tool to reduce the development cost and improve the effectiveness of intelligent tutoring software.
We show that deep reinforcement learning can be used to provide adaptive pedagogical support to students learning about the concept of volume.
arXiv Detail & Related papers (2023-04-11T02:11:24Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - A Framework for Undergraduate Data Collection Strategies for Student
Support Recommendation Systems in Higher Education [12.358921226358133]
This paper outlines a data collection framework specific to recommender systems within higher education.
The purpose of this paper is to outline a data collection framework specific to recommender systems within this context.
arXiv Detail & Related papers (2022-10-16T13:39:11Z) - Self-Supervised Representation Learning: Introduction, Advances and
Challenges [125.38214493654534]
Self-supervised representation learning methods aim to provide powerful deep feature learning without the requirement of large annotated datasets.
This article introduces this vibrant area including key concepts, the four main families of approach and associated state of the art, and how self-supervised methods are applied to diverse modalities of data.
arXiv Detail & Related papers (2021-10-18T13:51:22Z) - Exploring Bayesian Deep Learning for Urgent Instructor Intervention Need
in MOOC Forums [58.221459787471254]
Massive Open Online Courses (MOOCs) have become a popular choice for e-learning thanks to their great flexibility.
Due to large numbers of learners and their diverse backgrounds, it is taxing to offer real-time support.
With the large volume of posts and high workloads for MOOC instructors, it is unlikely that the instructors can identify all learners requiring intervention.
This paper explores for the first time Bayesian deep learning on learner-based text posts with two methods: Monte Carlo Dropout and Variational Inference.
arXiv Detail & Related papers (2021-04-26T15:12:13Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Dual Policy Distillation [58.43610940026261]
Policy distillation, which transfers a teacher policy to a student policy, has achieved great success in challenging tasks of deep reinforcement learning.
In this work, we introduce dual policy distillation(DPD), a student-student framework in which two learners operate on the same environment to explore different perspectives of the environment.
The key challenge in developing this dual learning framework is to identify the beneficial knowledge from the peer learner for contemporary learning-based reinforcement learning algorithms.
arXiv Detail & Related papers (2020-06-07T06:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.