Who Gets the Kidney? Human-AI Alignment, Indecision, and Moral Values
- URL: http://arxiv.org/abs/2506.00079v1
- Date: Fri, 30 May 2025 01:23:11 GMT
- Title: Who Gets the Kidney? Human-AI Alignment, Indecision, and Moral Values
- Authors: John P. Dickerson, Hadi Hosseini, Samarth Khanna, Leona Pierce,
- Abstract summary: We show that Large Language Models (LLMs) exhibit stark deviations from human values in prioritizing various attributes.<n>We show that low-rank supervised fine-tuning with few samples is often effective in improving both decision consistency and calibrating indecision modeling.
- Score: 36.47201247038004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid integration of Large Language Models (LLMs) in high-stakes decision-making -- such as allocating scarce resources like donor organs -- raises critical questions about their alignment with human moral values. We systematically evaluate the behavior of several prominent LLMs against human preferences in kidney allocation scenarios and show that LLMs: i) exhibit stark deviations from human values in prioritizing various attributes, and ii) in contrast to humans, LLMs rarely express indecision, opting for deterministic decisions even when alternative indecision mechanisms (e.g., coin flipping) are provided. Nonetheless, we show that low-rank supervised fine-tuning with few samples is often effective in improving both decision consistency and calibrating indecision modeling. These findings illustrate the necessity of explicit alignment strategies for LLMs in moral/ethical domains.
Related papers
- Towards a Cascaded LLM Framework for Cost-effective Human-AI Decision-Making [55.2480439325792]
We present a cascaded LLM decision framework that adaptively delegates tasks across multiple tiers of expertise.<n>First, a deferral policy determines whether to accept the base model's answer or regenerate it with the large model.<n>Second, an abstention policy decides whether the cascade model response is sufficiently certain or requires human intervention.
arXiv Detail & Related papers (2025-06-13T15:36:22Z) - The Staircase of Ethics: Probing LLM Value Priorities through Multi-Step Induction to Complex Moral Dilemmas [20.792208554628367]
We introduce the Multi-step Moral Dilemmas dataset to evaluate the evolving moral judgments of LLMs across 3,302 five-stage dilemmas.<n>This framework enables a fine-grained, dynamic analysis of how LLMs adjust their moral reasoning across escalating dilemmas.<n>Our findings call for a shift toward dynamic, context-aware evaluation paradigms, paving the way for more human-aligned and value-sensitive development of LLMs.
arXiv Detail & Related papers (2025-05-23T17:59:50Z) - Distributive Fairness in Large Language Models: Evaluating Alignment with Human Values [13.798198972161657]
A number of societal problems involve the distribution of resources, where fairness, along with economic efficiency, play a critical role in the desirability of outcomes.<n>This paper examines whether large language models (LLMs) adhere to fundamental fairness concepts and investigate their alignment with human preferences.
arXiv Detail & Related papers (2025-02-01T04:24:47Z) - Normative Evaluation of Large Language Models with Everyday Moral Dilemmas [0.0]
We evaluate large language models (LLMs) on complex, everyday moral dilemmas sourced from the "Am I the Asshole" (AITA) community on Reddit.<n>Our results demonstrate that large language models exhibit distinct patterns of moral judgment, varying substantially from human evaluations on the AITA subreddit.
arXiv Detail & Related papers (2025-01-30T01:29:46Z) - Large-scale moral machine experiment on large language models [0.0]
We evaluate moral judgments across 52 different Large Language Models (LLMs) in autonomous driving scenarios.<n> proprietary models and open-source models exceeding 10 billion parameters demonstrated relatively close alignment with human judgments.<n>However, model updates did not consistently improve alignment with human preferences, and many LLMs showed excessive emphasis on specific ethical principles.
arXiv Detail & Related papers (2024-11-11T08:36:49Z) - Uncovering Factor Level Preferences to Improve Human-Model Alignment [58.50191593880829]
We introduce PROFILE, a framework that uncovers and quantifies the influence of specific factors driving preferences.
ProFILE's factor level analysis explains the 'why' behind human-model alignment and misalignment.
We demonstrate how leveraging factor level insights, including addressing misaligned factors, can improve alignment with human preferences.
arXiv Detail & Related papers (2024-10-09T15:02:34Z) - A Survey on Human Preference Learning for Large Language Models [81.41868485811625]
The recent surge of versatile large language models (LLMs) largely depends on aligning increasingly capable foundation models with human intentions by preference learning.
This survey covers the sources and formats of preference feedback, the modeling and usage of preference signals, as well as the evaluation of the aligned LLMs.
arXiv Detail & Related papers (2024-06-17T03:52:51Z) - Decision-Making Behavior Evaluation Framework for LLMs under Uncertain Context [5.361970694197912]
This paper proposes a framework, grounded in behavioral economics, to evaluate the decision-making behaviors of large language models (LLMs)
We estimate the degree of risk preference, probability weighting, and loss aversion in a context-free setting for three commercial LLMs: ChatGPT-4.0-Turbo, Claude-3-Opus, and Gemini-1.0-pro.
Our results reveal that LLMs generally exhibit patterns similar to humans, such as risk aversion and loss aversion, with a tendency to overweight small probabilities.
arXiv Detail & Related papers (2024-06-10T02:14:19Z) - Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches [69.73783026870998]
This work proposes a novel framework, ValueLex, to reconstruct Large Language Models' unique value system from scratch.
Based on Lexical Hypothesis, ValueLex introduces a generative approach to elicit diverse values from 30+ LLMs.
We identify three core value dimensions, Competence, Character, and Integrity, each with specific subdimensions, revealing that LLMs possess a structured, albeit non-human, value system.
arXiv Detail & Related papers (2024-04-19T09:44:51Z) - Heterogeneous Value Alignment Evaluation for Large Language Models [91.96728871418]
Large Language Models (LLMs) have made it crucial to align their values with those of humans.
We propose a Heterogeneous Value Alignment Evaluation (HVAE) system to assess the success of aligning LLMs with heterogeneous values.
arXiv Detail & Related papers (2023-05-26T02:34:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.