Quantum theory of fractional topological pumping of lattice solitons
- URL: http://arxiv.org/abs/2506.00090v1
- Date: Fri, 30 May 2025 08:21:08 GMT
- Title: Quantum theory of fractional topological pumping of lattice solitons
- Authors: Julius Bohm, Hugo Gerlitz, Christina Jörg, Michael Fleischhauer,
- Abstract summary: We present a full quantum description of topological pumps of lattice solitons.<n>We identify a topological invariant, a many-body Chern number, determined by the band structure of the center-of-mass.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the hallmarks of topological quantum systems is the robust quantization of particle transport, which is the origin of the integer-valued Quantum Hall conductivity. In the presence of interactions the topological transport can also become fractional. Recent experiments on topological pumps constructed by arrays of photonic waveguides have demonstrated both integer and fractional transport of lattice solitons. Here a background medium mediates interactions between photons via a Kerr nonlinearity and leads to the formation of self-bound composites, called lattice solitons. Upon increasing the interaction strength of these solitons a sequence of transitions was observed from a phase with integer transport in a pump cycle through different phases of fractional transport to a phase with no transport. We here present a full quantum description of topological pumps of solitons. This approach allows us to identify a topological invariant, a many-body Chern number, determined by the band structure of the center-of-mass (COM) momentum of the solitons, which fully governs their transport. Increasing the interaction leads to a successive merging of COM bands which explains the observed sequence of topological phase transitions and also the potential for a breakdown of topological quantization for intermediate interaction strength
Related papers
- Topological photon pumping in quantum optical systems [0.0]
We introduce an extended version of the Rice-Mele model with all-to-all couplings.
We numerically demonstrate topologically protected and dispersionless transport of a photon on a one-dimensional emitter chain.
arXiv Detail & Related papers (2024-04-08T14:45:42Z) - One-dimensional Dexter-type excitonic topological phase transition [7.233903256213042]
We have computed the Zak phase for a generic one-dimensional dimerised excitonic model.
Tuning relevant hopping parameters gives rise to a rich spectrum of physics.
A new concept of composite chiral site" was developed to interpret the Zak phase.
arXiv Detail & Related papers (2023-04-27T21:43:07Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Interaction-induced topological pumping in a solid-state quantum system [18.7657779101508]
Inter-particle interaction can profoundly alter the band structure of quantum many-body systems.
Here we demonstrate interaction-induced topological pumping in a solid-state quantum system comprising an array of 36 superconducting qubits.
arXiv Detail & Related papers (2023-03-08T13:57:13Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Topological inverse band theory in waveguide quantum electrodynamics [1.6036148576537623]
Topological phases play a crucial role in the fundamental physics of light-matter interaction and emerging applications of quantum technologies.
Here, we introduce a concept of the inverse energy band and explore analytically topological scattering in a waveguide with an array of quantum emitters.
arXiv Detail & Related papers (2023-01-13T11:17:06Z) - Multiparticle quantum walk: a dynamical probe of topological many-body
excitations [0.0]
Recent experiments demonstrated that single-particle quantum walks can reveal the topological properties of single-particle states.
We generalize this picture to the many-body realm by focusing on multiparticle quantum walks of strongly interacting fermions.
arXiv Detail & Related papers (2022-09-08T05:32:31Z) - Controlling Collective Phenomena by Engineering the Quantum State of
Force Carriers: The Case of Photon-Mediated Superconductivity and its
Criticality [0.0]
How are the scattering between the constituents of matter and the resulting collective phenomena affected by preparing the force carriers in different quantum states?
This question has become experimentally relevant in a specific non-relativistic version of QED implemented within materials.
We show that by preparing photons in pure Fock states one can enhance pair correlations, and even control the criticality and universality of the superconducting phase transition by the choice of the number of photons.
arXiv Detail & Related papers (2022-07-14T18:00:05Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Signatures of topology in quantum quench dynamics and their
interrelation [0.0]
We study the conditions for the appearance of entanglement spectrum crossings, dynamical quantum phase transitions, and dynamical Chern numbers.
For non-interacting models, we show that in general there is no direct relation between these three quantities.
arXiv Detail & Related papers (2020-03-17T18:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.