Multiparticle quantum walk: a dynamical probe of topological many-body
excitations
- URL: http://arxiv.org/abs/2209.03569v3
- Date: Fri, 14 Jul 2023 05:15:02 GMT
- Title: Multiparticle quantum walk: a dynamical probe of topological many-body
excitations
- Authors: Bogdan Ostahie, Doru Sticlet, C\u{a}t\u{a}lin Pa\c{s}cu Moca, Bal\'azs
D\'ora, Mikl\'os Antal Werner, J\'anos K. Asb\'oth, Gergely Zar\'and
- Abstract summary: Recent experiments demonstrated that single-particle quantum walks can reveal the topological properties of single-particle states.
We generalize this picture to the many-body realm by focusing on multiparticle quantum walks of strongly interacting fermions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent experiments demonstrated that single-particle quantum walks can reveal
the topological properties of single-particle states. Here, we generalize this
picture to the many-body realm by focusing on multiparticle quantum walks of
strongly interacting fermions. After injecting $N$ particles with multiple
flavors in the interacting SU$(N)$ Su-Schrieffer-Heeger chain, their
multiparticle continuous-time quantum walk is monitored by a variety of
methods. We find that the many-body Berry phase in the $N$-body part of the
spectrum signals a topological transition upon varying the dimerization,
similarly to the single-particle case. This topological transition is captured
by the single- and many-body mean chiral displacement during the quantum walk
and remains present for strong interaction as well as for moderate disorder.
Our predictions are well within experimental reach for cold atomic gases and
can be used to detect the topological properties of many-body excitations
through dynamical probes.
Related papers
- Simulating a quasiparticle on a quantum device [0.0]
We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.
We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.
We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
arXiv Detail & Related papers (2024-09-13T05:39:13Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Interaction-induced topological pumping in a solid-state quantum system [18.7657779101508]
Inter-particle interaction can profoundly alter the band structure of quantum many-body systems.
Here we demonstrate interaction-induced topological pumping in a solid-state quantum system comprising an array of 36 superconducting qubits.
arXiv Detail & Related papers (2023-03-08T13:57:13Z) - Ergodicity Breaking Under Confinement in Cold-Atom Quantum Simulators [1.3367376307273382]
We consider the spin-$1/2$ quantum link formulation of $1+1$D quantum electrodynamics with a topological $theta$-angle.
We show an interplay between confinement and the ergodicity-breaking paradigms of quantum many-body scarring and Hilbert-space fragmentation.
arXiv Detail & Related papers (2023-01-18T19:00:01Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum Many-Body Scars: A Quasiparticle Perspective [0.0]
We discuss the phenomenon of quantum many-body scars, which can give rise to certain species of stable quasiparticles throughout the energy spectrum.
This goes along with a set of unusual non-equilibrium phenomena including many-body revivals and non-thermal stationary states.
arXiv Detail & Related papers (2022-06-23T08:25:14Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.