On the Interaction of Noise, Compression Role, and Adaptivity under $(L_0, L_1)$-Smoothness: An SDE-based Approach
- URL: http://arxiv.org/abs/2506.00181v1
- Date: Fri, 30 May 2025 19:35:15 GMT
- Title: On the Interaction of Noise, Compression Role, and Adaptivity under $(L_0, L_1)$-Smoothness: An SDE-based Approach
- Authors: Enea Monzio Compagnoni, Rustem Islamov, Antonio Orvieto, Eduard Gorbunov,
- Abstract summary: We study the dynamics of Distributed SGD, Distributed Compressed SGD, and Distributed SignSGD.<n>Our analysis provides insights into the intricate interactions between batch noise, gradient compression, and adaptivity.
- Score: 20.77655203511758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Using stochastic differential equation (SDE) approximations, we study the dynamics of Distributed SGD, Distributed Compressed SGD, and Distributed SignSGD under $(L_0,L_1)$-smoothness and flexible noise assumptions. Our analysis provides insights -- which we validate through simulation -- into the intricate interactions between batch noise, stochastic gradient compression, and adaptivity in this modern theoretical setup. For instance, we show that \textit{adaptive} methods such as Distributed SignSGD can successfully converge under standard assumptions on the learning rate scheduler, even under heavy-tailed noise. On the contrary, Distributed (Compressed) SGD with pre-scheduled decaying learning rate fails to achieve convergence, unless such a schedule also accounts for an inverse dependency on the gradient norm -- de facto falling back into an adaptive method.
Related papers
- Generative Latent Neural PDE Solver using Flow Matching [8.397730500554047]
We propose a latent diffusion model for PDE simulation that embeds the PDE state in a lower-dimensional latent space.<n>Our framework uses an autoencoder to map different types of meshes onto a unified structured latent grid, capturing complex geometries.<n> Numerical experiments show that the proposed model outperforms several deterministic baselines in both accuracy and long-term stability.
arXiv Detail & Related papers (2025-03-28T16:44:28Z) - Unbiased and Sign Compression in Distributed Learning: Comparing Noise Resilience via SDEs [2.218667838700643]
Distributed methods are essential for handling machine learning pipelines comprising large-scale models and datasets.<n>Their robustness to large and heavy-tailed gradient noise, a phenomenon sometimes observed in language modeling, remains poorly understood.<n>This work addresses this gap by analyzing Distributed Compressed SGD (DCSGD) and Distributed SignSGD (DSignSGD) using differential equations.
arXiv Detail & Related papers (2025-02-24T09:39:17Z) - High-probability Convergence Bounds for Nonlinear Stochastic Gradient Descent Under Heavy-tailed Noise [59.25598762373543]
We show that wetailed high-prob convergence guarantees of learning on streaming data in the presence of heavy-tailed noise.
We demonstrate analytically and that $ta$ can be used to the preferred choice of setting for a given problem.
arXiv Detail & Related papers (2023-10-28T18:53:41Z) - CoLiDE: Concomitant Linear DAG Estimation [12.415463205960156]
We deal with the problem of learning acyclic graph structure from observational data to a linear equation.
We propose a new convex score function for sparsity-aware learning DAGs.
arXiv Detail & Related papers (2023-10-04T15:32:27Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - $z$-SignFedAvg: A Unified Stochastic Sign-based Compression for
Federated Learning [14.363110221372274]
Federated Learning (FL) is a promising privacy-preserving distributed learning paradigm.
FL suffers from high communication cost when training large-scale machine learning models.
We propose a novel noisy perturbation scheme with a general symmetric noise distribution for sign-based compression.
arXiv Detail & Related papers (2023-02-06T06:54:49Z) - Optimizing Information-theoretical Generalization Bounds via Anisotropic
Noise in SGLD [73.55632827932101]
We optimize the information-theoretical generalization bound by manipulating the noise structure in SGLD.
We prove that with constraint to guarantee low empirical risk, the optimal noise covariance is the square root of the expected gradient covariance.
arXiv Detail & Related papers (2021-10-26T15:02:27Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z) - Noise and Fluctuation of Finite Learning Rate Stochastic Gradient
Descent [3.0079490585515343]
gradient descent (SGD) is relatively well understood in the vanishing learning rate regime.
We propose to study the basic properties of SGD and its variants in the non-vanishing learning rate regime.
arXiv Detail & Related papers (2020-12-07T12:31:43Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
We propose a new accelerated first-order method called clipped-SSTM for smooth convex optimization with heavy-tailed distributed noise in gradients.
We prove new complexity that outperform state-of-the-art results in this case.
We derive the first non-trivial high-probability complexity bounds for SGD with clipping without light-tails assumption on the noise.
arXiv Detail & Related papers (2020-05-21T17:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.