Chain-of-Frames: Advancing Video Understanding in Multimodal LLMs via Frame-Aware Reasoning
- URL: http://arxiv.org/abs/2506.00318v1
- Date: Sat, 31 May 2025 00:08:21 GMT
- Title: Chain-of-Frames: Advancing Video Understanding in Multimodal LLMs via Frame-Aware Reasoning
- Authors: Sara Ghazanfari, Francesco Croce, Nicolas Flammarion, Prashanth Krishnamurthy, Farshad Khorrami, Siddharth Garg,
- Abstract summary: We propose to obtain video LLMs whose reasoning steps are grounded in, and explicitly refer to, the relevant video frames.<n>Our approach is simple and self-contained, and, unlike existing approaches for video CoT, does not require auxiliary networks to select or caption relevant frames.<n>This, in turn, leads to improved performance across multiple video understanding benchmarks.
- Score: 37.86612817818566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has shown that eliciting Large Language Models (LLMs) to generate reasoning traces in natural language before answering the user's request can significantly improve their performance across tasks. This approach has been extended to multimodal LLMs, where the models can produce chain-of-thoughts (CoT) about the content of input images and videos. In this work, we propose to obtain video LLMs whose reasoning steps are grounded in, and explicitly refer to, the relevant video frames. For this, we first create CoF-Data, a large dataset of diverse questions, answers, and corresponding frame-grounded reasoning traces about both natural and synthetic videos, spanning various topics and tasks. Then, we fine-tune existing video LLMs on this chain-of-frames (CoF) data. Our approach is simple and self-contained, and, unlike existing approaches for video CoT, does not require auxiliary networks to select or caption relevant frames. We show that our models based on CoF are able to generate chain-of-thoughts that accurately refer to the key frames to answer the given question. This, in turn, leads to improved performance across multiple video understanding benchmarks, for example, surpassing leading video LLMs on Video-MME, MVBench, and VSI-Bench, and notably reducing the hallucination rate. Code available at https://github.com/SaraGhazanfari/CoF}{github.com/SaraGhazanfari/CoF.
Related papers
- Enhancing Long Video Question Answering with Scene-Localized Frame Grouping [19.83545369186771]
Current Multimodal Large Language Models (MLLMs) often perform poorly in long video understanding.<n>We propose a new scenario under the video question-answering task, SceneQA.<n>We introduce a novel method called SLFG to combine individual frames into semantically coherent scene frames.
arXiv Detail & Related papers (2025-08-05T02:28:58Z) - ThinkVideo: High-Quality Reasoning Video Segmentation with Chain of Thoughts [64.93416171745693]
Reasoning Video Object is a challenging task, which generates a mask sequence from an input video and an implicit, complex text query.<n>Existing works probe into the problem by finetuning Multimodal Large Language Models (MLLM) for segmentation-based output, while still falling short in difficult cases on videos given temporally-sensitive queries.<n>We propose ThinkVideo, a novel framework which leverages the zero-shot Chain-of-Thought (CoT) capability of MLLM to address these challenges.
arXiv Detail & Related papers (2025-05-24T07:01:31Z) - VidCtx: Context-aware Video Question Answering with Image Models [15.1350316858766]
We introduce VidCtx, a novel training-free VideoQA framework which integrates both visual information from input frames and textual descriptions of others frames.<n>Experiments show that VidCtx achieves competitive performance among approaches that rely on open models.
arXiv Detail & Related papers (2024-12-23T09:26:38Z) - VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection [61.54044967253421]
We introduce VideoEspresso, a novel dataset that features VideoQA pairs preserving essential spatial details and temporal coherence.
Our construction pipeline employs a semantic-aware method to reduce redundancy, followed by generating QA pairs using GPT-4o.
We propose a Hybrid LVLMs Collaboration framework, featuring a Frame Selector and a two-stage instruction fine-tuned reasoning LVLM.
arXiv Detail & Related papers (2024-11-22T08:33:36Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)<n>We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.<n>We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding [66.56100008577134]
This study focuses on designing an efficient and effective model for long-term video understanding.
We propose to process videos in an online manner and store past video information in a memory bank.
Our model can achieve state-of-the-art performances across multiple datasets.
arXiv Detail & Related papers (2024-04-08T17:59:24Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - Self-Adaptive Sampling for Efficient Video Question-Answering on Image--Text Models [41.12711820047315]
Video understanding models usually randomly sample a set of frames or clips, regardless of internal correlations between their visual contents, nor their relevance to the problem.
We propose two frame sampling strategies, namely the most domain frames (MDF) and most implied frames (MIF), to maximally preserve those frames that are most likely vital to the given questions.
arXiv Detail & Related papers (2023-07-09T14:54:30Z) - LAVENDER: Unifying Video-Language Understanding as Masked Language
Modeling [102.42424022921243]
Masked Language Modeling (MLM) is used as the common interface for all pre-training and downstream tasks.
Experiments show that this unified framework achieves competitive performance on 14 VidL benchmarks.
arXiv Detail & Related papers (2022-06-14T20:43:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.