ThinkVideo: High-Quality Reasoning Video Segmentation with Chain of Thoughts
- URL: http://arxiv.org/abs/2505.18561v1
- Date: Sat, 24 May 2025 07:01:31 GMT
- Title: ThinkVideo: High-Quality Reasoning Video Segmentation with Chain of Thoughts
- Authors: Shiu-hong Kao, Yu-Wing Tai, Chi-Keung Tang,
- Abstract summary: Reasoning Video Object is a challenging task, which generates a mask sequence from an input video and an implicit, complex text query.<n>Existing works probe into the problem by finetuning Multimodal Large Language Models (MLLM) for segmentation-based output, while still falling short in difficult cases on videos given temporally-sensitive queries.<n>We propose ThinkVideo, a novel framework which leverages the zero-shot Chain-of-Thought (CoT) capability of MLLM to address these challenges.
- Score: 64.93416171745693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning Video Object Segmentation is a challenging task, which generates a mask sequence from an input video and an implicit, complex text query. Existing works probe into the problem by finetuning Multimodal Large Language Models (MLLM) for segmentation-based output, while still falling short in difficult cases on videos given temporally-sensitive queries, primarily due to the failure to integrate temporal and spatial information. In this paper, we propose ThinkVideo, a novel framework which leverages the zero-shot Chain-of-Thought (CoT) capability of MLLM to address these challenges. Specifically, ThinkVideo utilizes the CoT prompts to extract object selectivities associated with particular keyframes, then bridging the reasoning image segmentation model and SAM2 video processor to output mask sequences. The ThinkVideo framework is training-free and compatible with closed-source MLLMs, which can be applied to Reasoning Video Instance Segmentation. We further extend the framework for online video streams, where the CoT is used to update the object of interest when a better target starts to emerge and becomes visible. We conduct extensive experiments on video object segmentation with explicit and implicit queries. The results show that ThinkVideo significantly outperforms previous works in both cases, qualitatively and quantitatively.
Related papers
- Multi-Granularity Video Object Segmentation [36.06127939037613]
We propose a large-scale, densely annotated multi-granularity video object segmentation (MUG-VOS) dataset.<n>We automatically collected a training set that assists in tracking both salient and non-salient objects, and we also curated a human-annotated test set for reliable evaluation.<n>In addition, we present memory-based mask propagation model (MMPM), trained and evaluated on MUG-VOS dataset.
arXiv Detail & Related papers (2024-12-02T13:17:41Z) - VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection [61.54044967253421]
We introduce VideoEspresso, a novel dataset that features VideoQA pairs preserving essential spatial details and temporal coherence.
Our construction pipeline employs a semantic-aware method to reduce redundancy, followed by generating QA pairs using GPT-4o.
We propose a Hybrid LVLMs Collaboration framework, featuring a Frame Selector and a two-stage instruction fine-tuned reasoning LVLM.
arXiv Detail & Related papers (2024-11-22T08:33:36Z) - One Token to Seg Them All: Language Instructed Reasoning Segmentation in Videos [41.34787907803329]
VideoLISA is a video-based multimodal large language model designed to tackle the problem of language-instructed reasoning segmentation in videos.
VideoLISA generates temporally consistent segmentation masks in videos based on language instructions.
arXiv Detail & Related papers (2024-09-29T07:47:15Z) - ViLLa: Video Reasoning Segmentation with Large Language Model [48.75470418596875]
We present ViLLa: Video reasoning segmentation with Large Language Model.<n>Our ViLLa manages to tackle these challenges through multiple core innovations.<n>To enable efficient processing of long videos, ViLLa incorporates (3) a key segment sampler that adaptively partitions long videos into shorter but semantically dense segments for less redundancy.
arXiv Detail & Related papers (2024-07-18T17:59:17Z) - VISA: Reasoning Video Object Segmentation via Large Language Models [64.33167989521357]
We introduce a new task, Reasoning Video Object (ReasonVOS)
This task aims to generate a sequence of segmentation masks in response to implicit text queries that require complex reasoning abilities.
We introduce VISA (Video-based large language Instructed Assistant) to tackle ReasonVOS.
arXiv Detail & Related papers (2024-07-16T02:29:29Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLM is a simple yet powerful VideoLLM for long video understanding.
We encode video representations that incorporate both local and global information.
Our model produces more precise responses for long video understanding.
arXiv Detail & Related papers (2024-04-04T11:33:29Z) - Multi-Attention Network for Compressed Video Referring Object
Segmentation [103.18477550023513]
Referring video object segmentation aims to segment the object referred by a given language expression.
Existing works typically require compressed video bitstream to be decoded to RGB frames before being segmented.
This may hamper its application in real-world computing resource limited scenarios, such as autonomous cars and drones.
arXiv Detail & Related papers (2022-07-26T03:00:52Z) - A Hierarchical Multi-Modal Encoder for Moment Localization in Video
Corpus [31.387948069111893]
We show how to identify a short segment in a long video that semantically matches a text query.
To tackle this problem, we propose the HierArchical Multi-Modal EncodeR (HAMMER) that encodes a video at both the coarse-grained clip level and the fine-trimmed frame level.
We conduct extensive experiments to evaluate our model on moment localization in video corpus on ActivityNet Captions and TVR datasets.
arXiv Detail & Related papers (2020-11-18T02:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.