TreeRare: Syntax Tree-Guided Retrieval and Reasoning for Knowledge-Intensive Question Answering
- URL: http://arxiv.org/abs/2506.00331v1
- Date: Sat, 31 May 2025 01:07:50 GMT
- Title: TreeRare: Syntax Tree-Guided Retrieval and Reasoning for Knowledge-Intensive Question Answering
- Authors: Boyi Zhang, Zhuo Liu, Hangfeng He,
- Abstract summary: Iterative and adaptive retrieval has been shown to be a promising approach to resolve complex, knowledge-intensive questions.<n>We propose TreeRare, a framework that utilizes syntax trees to guide information retrieval and reasoning for question answering.<n>TreeRare achieves substantial improvements over existing state-of-the-art methods.
- Score: 10.597526246308938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real practice, questions are typically complex and knowledge-intensive, requiring Large Language Models (LLMs) to recognize the multifaceted nature of the question and reason across multiple information sources. Iterative and adaptive retrieval, where LLMs decide when and what to retrieve based on their reasoning, has been shown to be a promising approach to resolve complex, knowledge-intensive questions. However, the performance of such retrieval frameworks is limited by the accumulation of reasoning errors and misaligned retrieval results. To overcome these limitations, we propose TreeRare (Syntax Tree-Guided Retrieval and Reasoning), a framework that utilizes syntax trees to guide information retrieval and reasoning for question answering. Following the principle of compositionality, TreeRare traverses the syntax tree in a bottom-up fashion, and in each node, it generates subcomponent-based queries and retrieves relevant passages to resolve localized uncertainty. A subcomponent question answering module then synthesizes these passages into concise, context-aware evidence. Finally, TreeRare aggregates the evidence across the tree to form a final answer. Experiments across five question answering datasets involving ambiguous or multi-hop reasoning demonstrate that TreeRare achieves substantial improvements over existing state-of-the-art methods.
Related papers
- ReTreever: Tree-based Coarse-to-Fine Representations for Retrieval [64.44265315244579]
We propose a tree-based method for organizing and representing reference documents at various granular levels.<n>Our method, called ReTreever, jointly learns a routing function per internal node of a binary tree such that query and reference documents are assigned to similar tree branches.<n>Our evaluations show that ReTreever generally preserves full representation accuracy.
arXiv Detail & Related papers (2025-02-11T21:35:13Z) - Tree of Reviews: A Tree-based Dynamic Iterative Retrieval Framework for Multi-hop Question Answering [0.18849131083278733]
We propose a dynamic retrieval framework called Tree of Reviews (ToR) for multi-hop question answering.
ToR achieves state-of-the-art performance in both retrieval and response generation.
arXiv Detail & Related papers (2024-04-22T09:25:05Z) - Probabilistic Tree-of-thought Reasoning for Answering
Knowledge-intensive Complex Questions [93.40614719648386]
Large language models (LLMs) are capable of answering knowledge-intensive complex questions with chain-of-thought (CoT) reasoning.
Recent works turn to retrieving external knowledge to augment CoT reasoning.
We propose a novel approach: Probabilistic Tree-of-thought Reasoning (ProbTree)
arXiv Detail & Related papers (2023-11-23T12:52:37Z) - Tree Prompting: Efficient Task Adaptation without Fine-Tuning [112.71020326388029]
Tree Prompting builds a decision tree of prompts, linking multiple LM calls together to solve a task.
Experiments on classification datasets show that Tree Prompting improves accuracy over competing methods and is competitive with fine-tuning.
arXiv Detail & Related papers (2023-10-21T15:18:22Z) - Reasoning over Hierarchical Question Decomposition Tree for Explainable
Question Answering [83.74210749046551]
We propose to leverage question decomposing for heterogeneous knowledge integration.
We propose a novel two-stage XQA framework, Reasoning over Hierarchical Question Decomposition Tree (RoHT)
Experiments on complex QA datasets KQA Pro and Musique show that our framework outperforms SOTA methods significantly.
arXiv Detail & Related papers (2023-05-24T11:45:59Z) - RLET: A Reinforcement Learning Based Approach for Explainable QA with
Entailment Trees [47.745218107037786]
We propose RLET, a Reinforcement Learning based Entailment Tree generation framework.
RLET iteratively performs single step reasoning with sentence selection and deduction generation modules.
Experiments on three settings of the EntailmentBank dataset demonstrate the strength of using RL framework.
arXiv Detail & Related papers (2022-10-31T06:45:05Z) - DecAF: Joint Decoding of Answers and Logical Forms for Question
Answering over Knowledge Bases [81.19499764899359]
We propose a novel framework DecAF that jointly generates both logical forms and direct answers.
DecAF achieves new state-of-the-art accuracy on WebQSP, FreebaseQA, and GrailQA benchmarks.
arXiv Detail & Related papers (2022-09-30T19:51:52Z) - Explaining Answers with Entailment Trees [16.555369850015055]
We aim to explain answers by showing how evidence leads to the answer in a systematic way.
Our approach is to generate explanations in the form of entailment trees, namely a tree of entailment steps from facts that are known, through intermediate conclusions, to the final answer.
To train a model with this skill, we created ENTAILMENTBANK, the first dataset to contain multistep entailment trees.
arXiv Detail & Related papers (2021-04-17T23:13:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.