Channel-Imposed Fusion: A Simple yet Effective Method for Medical Time Series Classification
- URL: http://arxiv.org/abs/2506.00337v1
- Date: Sat, 31 May 2025 01:44:30 GMT
- Title: Channel-Imposed Fusion: A Simple yet Effective Method for Medical Time Series Classification
- Authors: Ming Hu, Jianfu Yin, Mingyu Dou, Yuqi Wang, Ruochen Dang, Siyi Liang, Cong Hu, Yao Wang, Bingliang Hu, Quan Wang,
- Abstract summary: This study shifts focus toward a modeling paradigm that emphasizes structural transparency, aligning more closely with the intrinsic characteristics of medical data.<n>We propose a novel method, Channel Imposed Fusion (CIF), which enhances the signal-to-noise ratio through cross-channel information fusion.<n> Experimental results on multiple publicly available EEG and ECG datasets demonstrate that the proposed method not only outperforms existing state-of-the-art (SOTA) approaches in terms of various classification metrics, but also significantly enhances the transparency of the classification process, offering a novel perspective for medical time series classification.
- Score: 11.520819583343128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The automatic classification of medical time series signals, such as electroencephalogram (EEG) and electrocardiogram (ECG), plays a pivotal role in clinical decision support and early detection of diseases. Although Transformer based models have achieved notable performance by implicitly modeling temporal dependencies through self-attention mechanisms, their inherently complex architectures and opaque reasoning processes undermine their trustworthiness in high stakes clinical settings. In response to these limitations, this study shifts focus toward a modeling paradigm that emphasizes structural transparency, aligning more closely with the intrinsic characteristics of medical data. We propose a novel method, Channel Imposed Fusion (CIF), which enhances the signal-to-noise ratio through cross-channel information fusion, effectively reduces redundancy, and improves classification performance. Furthermore, we integrate CIF with the Temporal Convolutional Network (TCN), known for its structural simplicity and controllable receptive field, to construct an efficient and explicit classification framework. Experimental results on multiple publicly available EEG and ECG datasets demonstrate that the proposed method not only outperforms existing state-of-the-art (SOTA) approaches in terms of various classification metrics, but also significantly enhances the transparency of the classification process, offering a novel perspective for medical time series classification.
Related papers
- Unleashing Vision Foundation Models for Coronary Artery Segmentation: Parallel ViT-CNN Encoding and Variational Fusion [12.839049648094893]
coronary artery segmentation is critical for computeraided diagnosis of coronary artery disease (CAD)<n>We propose a novel framework that leverages the power of vision foundation models (VFMs) through a parallel encoding architecture.<n>The proposed framework significantly outperforms state-of-the-art methods, achieving superior performance in accurate coronary artery segmentation.
arXiv Detail & Related papers (2025-07-17T09:25:00Z) - A Novel Data Augmentation Strategy for Robust Deep Learning Classification of Biomedical Time-Series Data: Application to ECG and EEG Analysis [2.355460994057843]
This study proposes a novel and unified deep learning framework that achieves state-of-the-art performance across different signal types.<n>Unlike prior work, we scientifically increase signal complexity to achieve future-reaching capabilities, which resulted in the best predictions.<n>The architecture requires 130 MB of memory and processes each sample in 10 ms, suggesting suitability for deployment on low-end or wearable devices.
arXiv Detail & Related papers (2025-07-16T21:38:10Z) - Clinical NLP with Attention-Based Deep Learning for Multi-Disease Prediction [44.0876796031468]
This paper addresses the challenges posed by the unstructured nature and high-dimensional semantic complexity of electronic health record texts.<n>A deep learning method based on attention mechanisms is proposed to achieve unified modeling for information extraction and multi-label disease prediction.
arXiv Detail & Related papers (2025-07-02T07:45:22Z) - Structure-Accurate Medical Image Translation via Dynamic Frequency Balance and Knowledge Guidance [60.33892654669606]
Diffusion model is a powerful strategy to synthesize the required medical images.<n>Existing approaches still suffer from the problem of anatomical structure distortion due to the overfitting of high-frequency information.<n>We propose a novel method based on dynamic frequency balance and knowledge guidance.
arXiv Detail & Related papers (2025-04-13T05:48:13Z) - AI-Powered Automated Model Construction for Patient-Specific CFD Simulations of Aortic Flows [8.062885940500259]
This study introduces a deep-learning framework that automates the creation of simulation-ready vascular models from medical images.<n>The proposed approach demonstrates state-of-the-art performance in segmentation and mesh quality while significantly reducing manual effort and processing time.
arXiv Detail & Related papers (2025-03-16T14:18:25Z) - Revisiting Medical Image Retrieval via Knowledge Consolidation [46.6989555659494]
We propose a novel method to consolidate knowledge of hierarchical features and functions.<n>We introduce Depth-aware Representation Fusion (DaRF) and Structure-aware Contrastive Hashing (SCH)<n>Our method achieves a 5.6-38.9% improvement in mean Average Precision on the anatomical radiology dataset.
arXiv Detail & Related papers (2025-03-12T13:16:42Z) - CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis [46.56667527672019]
We introduce a Cross-Modal Temporal Pattern Discovery (CTPD) framework, designed to efficiently extract meaningful cross-modal temporal patterns from multimodal EHR data.
Our approach introduces shared initial temporal pattern representations which are refined using slot attention to generate temporal semantic embeddings.
arXiv Detail & Related papers (2024-11-01T15:54:07Z) - Boosting Masked ECG-Text Auto-Encoders as Discriminative Learners [10.088785685439134]
We propose D-BETA, a framework that pre-trains ECG and text data using a contrastive masked auto-encoder architecture.<n>D-BETA uniquely combines the strengths of generative with boosted discriminative capabilities to achieve robust cross-modal representations.
arXiv Detail & Related papers (2024-10-03T01:24:09Z) - FoME: A Foundation Model for EEG using Adaptive Temporal-Lateral Attention Scaling [19.85701025524892]
FoME (Foundation Model for EEG) is a novel approach using adaptive temporal-lateral attention scaling.
FoME is pre-trained on a diverse 1.7TB dataset of scalp and intracranial EEG recordings, comprising 745M parameters trained for 1,096k steps.
arXiv Detail & Related papers (2024-09-19T04:22:40Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - Class Attention to Regions of Lesion for Imbalanced Medical Image
Recognition [59.28732531600606]
We propose a framework named textbfClass textbfAttention to textbfREgions of the lesion (CARE) to handle data imbalance issues.
The CARE framework needs bounding boxes to represent the lesion regions of rare diseases.
Results show that the CARE variants with automated bounding box generation are comparable to the original CARE framework.
arXiv Detail & Related papers (2023-07-19T15:19:02Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Concept-based model explanations for Electronic Health Records [1.6837409766909865]
Testing with Concept Activation Vectors (TCAV) has recently been introduced as a way of providing human-understandable explanations.
We propose an extension of the method to time series data to enable an application of TCAV to sequential predictions in the EHR.
arXiv Detail & Related papers (2020-12-03T22:18:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.