Feature Fusion and Knowledge-Distilled Multi-Modal Multi-Target Detection
- URL: http://arxiv.org/abs/2506.00365v1
- Date: Sat, 31 May 2025 03:11:44 GMT
- Title: Feature Fusion and Knowledge-Distilled Multi-Modal Multi-Target Detection
- Authors: Ngoc Tuyen Do, Tri Nhu Do,
- Abstract summary: We propose a feature fusion and knowledge-distilled framework for multi-modal MTD.<n>We formulate the problem as a posterior probability optimization task, which is solved through a multi-stage training pipeline.<n> Experimental results demonstrate that our student model achieves approximately 95% of the teacher model's mean Average Precision.
- Score: 2.295863158976069
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the surveillance and defense domain, multi-target detection and classification (MTD) is considered essential yet challenging due to heterogeneous inputs from diverse data sources and the computational complexity of algorithms designed for resource-constrained embedded devices, particularly for Al-based solutions. To address these challenges, we propose a feature fusion and knowledge-distilled framework for multi-modal MTD that leverages data fusion to enhance accuracy and employs knowledge distillation for improved domain adaptation. Specifically, our approach utilizes both RGB and thermal image inputs within a novel fusion-based multi-modal model, coupled with a distillation training pipeline. We formulate the problem as a posterior probability optimization task, which is solved through a multi-stage training pipeline supported by a composite loss function. This loss function effectively transfers knowledge from a teacher model to a student model. Experimental results demonstrate that our student model achieves approximately 95% of the teacher model's mean Average Precision while reducing inference time by approximately 50%, underscoring its suitability for practical MTD deployment scenarios.
Related papers
- CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection [54.85000884785013]
Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the diversity of anomaly types, and the scarcity of training data.<n>We propose CLIPfusion, a method that leverages both discriminative and generative foundation models.<n>We believe that our method underscores the effectiveness of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly detection.
arXiv Detail & Related papers (2025-06-13T13:30:15Z) - FedMHO: Heterogeneous One-Shot Federated Learning Towards Resource-Constrained Edge Devices [12.08958206272527]
Federated Learning (FL) is increasingly adopted in edge computing scenarios, where a large number of heterogeneous clients operate under constrained or sufficient resources.<n>One-shot FL has emerged as a promising approach to mitigate communication overhead, and model-heterogeneous FL solves the problem of diverse computing resources across clients.<n>We propose a novel FL framework named FedMHO, which leverages deep classification models on resource-sufficient clients and lightweight generative models on resource-constrained devices.
arXiv Detail & Related papers (2025-02-12T15:54:56Z) - RADAR: Robust Two-stage Modality-incomplete Industrial Anomaly Detection [61.71770293720491]
We propose a novel two-stage Robust modAlity-imcomplete fusing and Detecting frAmewoRk, abbreviated as RADAR.
Our bootstrapping philosophy is to enhance two stages in MIIAD, improving the robustness of the Multimodal Transformer.
Our experimental results demonstrate that the proposed RADAR significantly surpasses conventional MIAD methods in terms of effectiveness and robustness.
arXiv Detail & Related papers (2024-10-02T16:47:55Z) - AMFD: Distillation via Adaptive Multimodal Fusion for Multispectral Pedestrian Detection [23.91870504363899]
Double-stream networks in multispectral detection employ two separate feature extraction branches for multi-modal data.
This has hindered the widespread employment of multispectral pedestrian detection in embedded devices for autonomous systems.
We introduce the Adaptive Modal Fusion Distillation (AMFD) framework, which can fully utilize the original modal features of the teacher network.
arXiv Detail & Related papers (2024-05-21T17:17:17Z) - Modality Prompts for Arbitrary Modality Salient Object Detection [57.610000247519196]
This paper delves into the task of arbitrary modality salient object detection (AM SOD)
It aims to detect salient objects from arbitrary modalities, eg RGB images, RGB-D images, and RGB-D-T images.
A novel modality-adaptive Transformer (MAT) will be proposed to investigate two fundamental challenges of AM SOD.
arXiv Detail & Related papers (2024-05-06T11:02:02Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Distilled Mid-Fusion Transformer Networks for Multi-Modal Human Activity
Recognition [34.424960016807795]
Multi-modal Human Activity Recognition could utilize the complementary information to build models that can generalize well.
Deep learning methods have shown promising results, their potential in extracting salient multi-modal spatial-temporal features has not been fully explored.
A knowledge distillation-based Multi-modal Mid-Fusion approach, DMFT, is proposed to conduct informative feature extraction and fusion to resolve the Multi-modal Human Activity Recognition task efficiently.
arXiv Detail & Related papers (2023-05-05T19:26:06Z) - Multi-Scale Aligned Distillation for Low-Resolution Detection [68.96325141432078]
This paper focuses on boosting the performance of low-resolution models by distilling knowledge from a high- or multi-resolution model.
On several instance-level detection tasks and datasets, the low-resolution models trained via our approach perform competitively with high-resolution models trained via conventional multi-scale training.
arXiv Detail & Related papers (2021-09-14T12:53:35Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - A Bayesian Multiscale Deep Learning Framework for Flows in Random Media [0.0]
Fine-scale simulation of complex systems governed by multiscale partial differential equations (PDEs) is computationally expensive and various multiscale methods have been developed for addressing such problems.
In this work, we introduce a novel hybrid deep-learning and multiscale approach for multiscale PDEs with limited training data.
For demonstration purposes, we focus on a porous media flow problem. We use an image-to-image supervised deep learning model to learn the mapping between the input permeability field and the multiscale basis functions.
arXiv Detail & Related papers (2021-03-08T23:11:46Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.