Distilled Mid-Fusion Transformer Networks for Multi-Modal Human Activity
Recognition
- URL: http://arxiv.org/abs/2305.03810v1
- Date: Fri, 5 May 2023 19:26:06 GMT
- Title: Distilled Mid-Fusion Transformer Networks for Multi-Modal Human Activity
Recognition
- Authors: Jingcheng Li, Lina Yao, Binghao Li, Claude Sammut
- Abstract summary: Multi-modal Human Activity Recognition could utilize the complementary information to build models that can generalize well.
Deep learning methods have shown promising results, their potential in extracting salient multi-modal spatial-temporal features has not been fully explored.
A knowledge distillation-based Multi-modal Mid-Fusion approach, DMFT, is proposed to conduct informative feature extraction and fusion to resolve the Multi-modal Human Activity Recognition task efficiently.
- Score: 34.424960016807795
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Human Activity Recognition is an important task in many human-computer
collaborative scenarios, whilst having various practical applications. Although
uni-modal approaches have been extensively studied, they suffer from data
quality and require modality-specific feature engineering, thus not being
robust and effective enough for real-world deployment. By utilizing various
sensors, Multi-modal Human Activity Recognition could utilize the complementary
information to build models that can generalize well. While deep learning
methods have shown promising results, their potential in extracting salient
multi-modal spatial-temporal features and better fusing complementary
information has not been fully explored. Also, reducing the complexity of the
multi-modal approach for edge deployment is another problem yet to resolve. To
resolve the issues, a knowledge distillation-based Multi-modal Mid-Fusion
approach, DMFT, is proposed to conduct informative feature extraction and
fusion to resolve the Multi-modal Human Activity Recognition task efficiently.
DMFT first encodes the multi-modal input data into a unified representation.
Then the DMFT teacher model applies an attentive multi-modal spatial-temporal
transformer module that extracts the salient spatial-temporal features. A
temporal mid-fusion module is also proposed to further fuse the temporal
features. Then the knowledge distillation method is applied to transfer the
learned representation from the teacher model to a simpler DMFT student model,
which consists of a lite version of the multi-modal spatial-temporal
transformer module, to produce the results. Evaluation of DMFT was conducted on
two public multi-modal human activity recognition datasets with various
state-of-the-art approaches. The experimental results demonstrate that the
model achieves competitive performance in terms of effectiveness, scalability,
and robustness.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - AMFD: Distillation via Adaptive Multimodal Fusion for Multispectral Pedestrian Detection [23.91870504363899]
Double-stream networks in multispectral detection employ two separate feature extraction branches for multi-modal data.
This has hindered the widespread employment of multispectral pedestrian detection in embedded devices for autonomous systems.
We introduce the Adaptive Modal Fusion Distillation (AMFD) framework, which can fully utilize the original modal features of the teacher network.
arXiv Detail & Related papers (2024-05-21T17:17:17Z) - Dynamic Self-adaptive Multiscale Distillation from Pre-trained Multimodal Large Model for Efficient Cross-modal Representation Learning [12.00246872965739]
We propose a novel dynamic self-adaptive multiscale distillation from pre-trained multimodal large model.
Our strategy employs a multiscale perspective, enabling the extraction structural knowledge across from the pre-trained multimodal large model.
Our methodology streamlines pre-trained multimodal large models using only their output features and original image-level information.
arXiv Detail & Related papers (2024-04-16T18:22:49Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z) - Generalized Product-of-Experts for Learning Multimodal Representations
in Noisy Environments [18.14974353615421]
We propose a novel method for multimodal representation learning in a noisy environment via the generalized product of experts technique.
In the proposed method, we train a separate network for each modality to assess the credibility of information coming from that modality.
We attain state-of-the-art performance on two challenging benchmarks: multimodal 3D hand-pose estimation and multimodal surgical video segmentation.
arXiv Detail & Related papers (2022-11-07T14:27:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.