Adversarial Machine Learning for Robust Password Strength Estimation
- URL: http://arxiv.org/abs/2506.00373v1
- Date: Sat, 31 May 2025 03:54:04 GMT
- Title: Adversarial Machine Learning for Robust Password Strength Estimation
- Authors: Pappu Jha, Hanzla Hamid, Oluseyi Olukola, Ashim Dahal, Nick Rahimi,
- Abstract summary: This study focuses on developing robust password strength estimation models using adversarial machine learning.<n>We apply five classification algorithms and use a dataset with more than 670,000 samples of adversarial passwords to train the models.<n>Results demonstrate that adversarial training improves password strength classification accuracy by up to 20% compared to traditional machine learning models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Passwords remain one of the most common methods for securing sensitive data in the digital age. However, weak password choices continue to pose significant risks to data security and privacy. This study aims to solve the problem by focusing on developing robust password strength estimation models using adversarial machine learning, a technique that trains models on intentionally crafted deceptive passwords to expose and address vulnerabilities posed by such passwords. We apply five classification algorithms and use a dataset with more than 670,000 samples of adversarial passwords to train the models. Results demonstrate that adversarial training improves password strength classification accuracy by up to 20% compared to traditional machine learning models. It highlights the importance of integrating adversarial machine learning into security systems to enhance their robustness against modern adaptive threats. Keywords: adversarial attack, password strength, classification, machine learning
Related papers
- Password Strength Detection via Machine Learning: Analysis, Modeling, and Evaluation [0.8225825738565354]
This study introduces various methods for system password cracking, outlines password defense strategies, and discusses the application of machine learning in the realm of password security.<n>We extract multiple characteristics of passwords, including length, the number of digits, the number of uppercase and lowercase letters, and the number of special characters.
arXiv Detail & Related papers (2025-05-22T09:27:40Z) - PassTSL: Modeling Human-Created Passwords through Two-Stage Learning [7.287089766975719]
We propose PassTSL (modeling human-created Passwords through Two-Stage Learning), inspired by the popular pretraining-finetuning framework in NLP and deep learning (DL)
PassTSL outperforms five state-of-the-art (SOTA) password cracking methods on password guessing by a significant margin ranging from 4.11% to 64.69% at the maximum point.
Based on PassTSL, we also implemented a password strength meter (PSM), and our experiments showed that it was able to estimate password strength more accurately.
arXiv Detail & Related papers (2024-07-19T09:23:30Z) - Robust Representation Learning for Privacy-Preserving Machine Learning:
A Multi-Objective Autoencoder Approach [0.9831489366502302]
We propose a robust representation learning framework for privacy-preserving machine learning (ppML)
Our method centers on training autoencoders in a multi-objective manner and then concatenating the latent and learned features from the encoding part as the encoded form of our data.
With our proposed framework, we can share our data and use third party tools without being under the threat of revealing its original form.
arXiv Detail & Related papers (2023-09-08T16:41:25Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Universal Neural-Cracking-Machines: Self-Configurable Password Models
from Auxiliary Data [21.277402919534566]
"universal password model" is a password model that adapts its guessing strategy based on the target system.
It exploits users' auxiliary information, such as email addresses, as a proxy signal to predict the underlying password distribution.
arXiv Detail & Related papers (2023-01-18T16:12:04Z) - Pre-trained Encoders in Self-Supervised Learning Improve Secure and
Privacy-preserving Supervised Learning [63.45532264721498]
Self-supervised learning is an emerging technique to pre-train encoders using unlabeled data.
We perform first systematic, principled measurement study to understand whether and when a pretrained encoder can address the limitations of secure or privacy-preserving supervised learning algorithms.
arXiv Detail & Related papers (2022-12-06T21:35:35Z) - On Deep Learning in Password Guessing, a Survey [4.1499725848998965]
This paper compares various deep learning-based password guessing approaches that do not require domain knowledge or assumptions about users' password structures and combinations.
We propose a promising research experimental design on using variations of IWGAN on password guessing under non-targeted offline attacks.
arXiv Detail & Related papers (2022-08-22T15:48:35Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z) - Stylized Adversarial Defense [105.88250594033053]
adversarial training creates perturbation patterns and includes them in the training set to robustify the model.
We propose to exploit additional information from the feature space to craft stronger adversaries.
Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses.
arXiv Detail & Related papers (2020-07-29T08:38:10Z) - Rethinking Clustering for Robustness [56.14672993686335]
ClusTR is a clustering-based and adversary-free training framework to learn robust models.
textitClusTR outperforms adversarially-trained networks by up to $4%$ under strong PGD attacks.
arXiv Detail & Related papers (2020-06-13T16:55:51Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.