論文の概要: Blockchain-Enabled Privacy-Preserving Second-Order Federated Edge Learning in Personalized Healthcare
- arxiv url: http://arxiv.org/abs/2506.00416v1
- Date: Sat, 31 May 2025 06:41:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:32.975463
- Title: Blockchain-Enabled Privacy-Preserving Second-Order Federated Edge Learning in Personalized Healthcare
- Title(参考訳): パーソナライズされたヘルスケアにおけるブロックチェーンによるプライバシ保護2次エッジラーニング
- Authors: Anum Nawaz, Muhammad Irfan, Xianjia Yu, Zhuo Zou, Tomi Westerlund,
- Abstract要約: フェデレートラーニング(FL)は、従来のクラウド中心の機械学習モデルにおいて、セキュリティとプライバシの課題に注目が集まっている。
1次FLアプローチは、異種非独立で同一に分散された(非id)データにより、パーソナライズされたモデルトレーニングにおいていくつかの課題に直面している。
近年,2次FLアプローチは,パーソナライズされたモデルトレーニングを改善しつつ,非IDデータセットの安定性と一貫性を維持している。
- 参考スコア(独自算出の注目度): 1.859970493489417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has attracted increasing attention to mitigate security and privacy challenges in traditional cloud-centric machine learning models specifically in healthcare ecosystems. FL methodologies enable the training of global models through localized policies, allowing independent operations at the edge clients' level. Conventional first-order FL approaches face several challenges in personalized model training due to heterogeneous non-independent and identically distributed (non-iid) data of each edge client. Recently, second-order FL approaches maintain the stability and consistency of non-iid datasets while improving personalized model training. This study proposes and develops a verifiable and auditable optimized second-order FL framework BFEL (blockchain-enhanced federated edge learning) based on optimized FedCurv for personalized healthcare systems. FedCurv incorporates information about the importance of each parameter to each client's task (through Fisher Information Matrix) which helps to preserve client-specific knowledge and reduce model drift during aggregation. Moreover, it minimizes communication rounds required to achieve a target precision convergence for each edge client while effectively managing personalized training on non-iid and heterogeneous data. The incorporation of Ethereum-based model aggregation ensures trust, verifiability, and auditability while public key encryption enhances privacy and security. Experimental results of federated CNNs and MLPs utilizing Mnist, Cifar-10, and PathMnist demonstrate the high efficiency and scalability of the proposed framework.
- Abstract(参考訳): フェデレートラーニング(FL)は、特にヘルスケアエコシステムにおいて、従来のクラウド中心の機械学習モデルにおいて、セキュリティとプライバシの課題を軽減するために注目を集めている。
FL手法は、ローカライズされたポリシーを通じてグローバルモデルのトレーニングを可能にし、エッジクライアントのレベルで独立した操作を可能にする。
従来の1次FLアプローチは、各エッジクライアントの不均一な非独立で同一に分散された(非ID)データのために、パーソナライズされたモデルトレーニングにおいていくつかの課題に直面している。
近年,2次FLアプローチは,パーソナライズされたモデルトレーニングを改善しつつ,非IDデータセットの安定性と一貫性を維持している。
本研究は、パーソナライズされた医療システムのための最適化されたFedCurvに基づく、検証可能で監査可能な2次FLフレームワークBFEL(Blockchain-enhanced Federated Edge Learning)を提案し、開発する。
FedCurvは、各クライアントのタスクに対する各パラメータの重要性に関する情報(Fisher Information Matrixを通じて)を取り込み、クライアント固有の知識を保存し、アグリゲーション中のモデルドリフトを減らすのに役立つ。
さらに、エッジクライアント毎の目標精度収束を実現するのに必要な通信ラウンドを最小化するとともに、非IDおよび異種データに対するパーソナライズされたトレーニングを効果的に管理する。
Ethereumベースのモデルアグリゲーションの導入により、公開鍵暗号化がプライバシとセキュリティを強化する一方で、信頼性、妥当性、監査性が保証される。
Mnist, Cifar-10, PathMnist を用いたフェデレーション CNN と MLP の実験結果から,提案フレームワークの高効率性とスケーラビリティが実証された。
関連論文リスト
- FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
フェデレートラーニング(FL)は、分散クライアント間の機械学習モデルの協調トレーニングにおいて、顕著なアプローチとして登場した。
我々は,この課題に対処するために設計された,革新的なクライアント適応アルゴリズムであるFedCAdaを紹介する。
我々はFedCAdaが適応性、収束性、安定性、全体的な性能の点で最先端の手法より優れていることを実証する。
論文 参考訳(メタデータ) (2024-05-20T06:12:33Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
我々は,意図に基づくクライアント選択機構を備えた新しいPFLアルゴリズムであるFedACSを提案する。
FedACSは、類似したデータ分散を持つクライアント間のコラボレーションを強化するためのアテンションメカニズムを統合している。
CIFAR10とFMNISTの実験は、FedACSの優位性を検証する。
論文 参考訳(メタデータ) (2023-12-23T03:31:46Z) - DCFL: Non-IID awareness Data Condensation aided Federated Learning [0.8158530638728501]
フェデレートラーニング(Federated Learning)とは、特定の量のプライベートデータセットを持つクライアントを活用して、中央サーバがグローバルモデルを反復的にトレーニングする分散学習パラダイムである。
問題は、クライアントサイドのプライベートデータが同一かつ独立して分散されないという事実にある。
本稿では、CKA(Centered Kernel Alignment)法を用いてクライアントをグループに分割し、IID非認識のデータセット凝縮法を用いてクライアントを完全化するDCFLを提案する。
論文 参考訳(メタデータ) (2023-12-21T13:04:24Z) - Privacy and Accuracy Implications of Model Complexity and Integration in Heterogeneous Federated Learning [8.842172558292027]
分散機械学習のプライバシ保護ソリューションとしてフェデレートラーニング(FL)が提案されている。
近年の研究では、クライアントデータのプライバシを損なうことができるMIA攻撃の影響が指摘されている。
論文 参考訳(メタデータ) (2023-11-29T15:54:15Z) - Personalized Privacy-Preserving Framework for Cross-Silo Federated
Learning [0.0]
Federated Learning(FL)は有望な分散ディープラーニング(DL)フレームワークであり、プライベートデータを共有することなく、クライアント間で共同でトレーニングされたDLベースのアプローチを可能にする。
本稿では,PPPFL(Personalized Privacy-Preserving Federated Learning)という新しいフレームワークを提案する。
提案するフレームワークは,MNIST,Fashion-MNIST,CIFAR-10,CIFAR-100など,さまざまなデータセット上で複数のFLベースラインより優れている。
論文 参考訳(メタデータ) (2023-02-22T07:24:08Z) - PGFed: Personalize Each Client's Global Objective for Federated Learning [7.810284483002312]
本稿では,各クライアントが自身のグローバルな目的をパーソナライズ可能な,パーソナライズされたFLフレームワークを提案する。
大規模な(O(N2))通信オーバーヘッドと潜在的なプライバシリークを回避するため、各クライアントのリスクは、他のクライアントの適応的リスクアグリゲーションの1次近似によって推定される。
異なるフェデレーション条件下での4つのデータセットに対する実験により,従来の最先端手法よりも一貫したPGFの改良が示された。
論文 参考訳(メタデータ) (2022-12-02T21:16:39Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Dubhe: Towards Data Unbiasedness with Homomorphic Encryption in
Federated Learning Client Selection [16.975086164684882]
Federated Learning(FL)は、クライアントが自身のローカルデータ上でモデルを協調的にトレーニングできる分散機械学習パラダイムである。
FLの性能劣化の原因を数学的に検証し,様々なデータセット上でのFLの性能について検討する。
そこで我々はDubheという名のプラグイン可能なシステムレベルのクライアント選択手法を提案し,HEの助けを借りてクライアントを積極的にトレーニングに参加させ,プライバシを保護できるようにする。
論文 参考訳(メタデータ) (2021-09-08T13:00:46Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
本稿では, 切断したFedAvgが, 実質的なデータ均一性でも驚くほど良好に動作できることを実証的に示す。
本稿では,差分プライベート(DP)FedAvgアルゴリズムの収束解析を行い,クリッピングバイアスとクライアント更新の分布との関係を明らかにする。
論文 参考訳(メタデータ) (2021-06-25T14:47:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。