G2S: A General-to-Specific Learning Framework for Temporal Knowledge Graph Forecasting with Large Language Models
- URL: http://arxiv.org/abs/2506.00445v1
- Date: Sat, 31 May 2025 07:57:19 GMT
- Title: G2S: A General-to-Specific Learning Framework for Temporal Knowledge Graph Forecasting with Large Language Models
- Authors: Long Bai, Zixuan Li, Xiaolong Jin, Jiafeng Guo, Xueqi Cheng, Tat-Seng Chua,
- Abstract summary: We propose a General-to-Specific learning framework (G2S) to disentangle the learning processes of the above two kinds of knowledge.<n>In the general learning stage, we mask the scenario information in different TKGs and convert it into anonymous temporal structures.<n>In the specific learning stage, we inject the scenario information into the structures via either in-context learning or fine-tuning modes.
- Score: 109.00835325199705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting over Temporal Knowledge Graphs (TKGs) which predicts future facts based on historical ones has received much attention. Recent studies have introduced Large Language Models (LLMs) for this task to enhance the models' generalization abilities. However, these models perform forecasting via simultaneously learning two kinds of entangled knowledge in the TKG: (1) general patterns, i.e., invariant temporal structures shared across different scenarios; and (2) scenario information, i.e., factual knowledge engaged in specific scenario, such as entities and relations. As a result, the learning processes of these two kinds of knowledge may interfere with each other, which potentially impact the generalization abilities of the models. To enhance the generalization ability of LLMs on this task, in this paper, we propose a General-to-Specific learning framework (G2S) that disentangles the learning processes of the above two kinds of knowledge. In the general learning stage, we mask the scenario information in different TKGs and convert it into anonymous temporal structures. After training on these structures, the model is able to capture the general patterns across different TKGs. In the specific learning stage, we inject the scenario information into the structures via either in-context learning or fine-tuning modes. Experimental results show that G2S effectively improves the generalization abilities of LLMs.
Related papers
- Gradual Learning: Optimizing Fine-Tuning with Partially Mastered Knowledge in Large Language Models [51.20499954955646]
Large language models (LLMs) acquire vast amounts of knowledge from extensive text corpora during the pretraining phase.
In later stages such as fine-tuning and inference, the model may encounter knowledge not covered in the initial training.
We propose a two-stage fine-tuning strategy to improve the model's overall test accuracy and knowledge retention.
arXiv Detail & Related papers (2024-10-08T08:35:16Z) - Exploring the Learning Capabilities of Language Models using LEVERWORLDS [23.40759867281453]
Learning a model of a setting often involves learning both general structure rules and specific properties of the instance.
This paper investigates the interplay between learning the general and the specific in various learning methods, with emphasis on sample efficiency.
arXiv Detail & Related papers (2024-10-01T09:02:13Z) - When Context Leads but Parametric Memory Follows in Large Language Models [4.567122178196834]
Large language models (LLMs) have demonstrated remarkable progress in leveraging diverse knowledge sources.
This study investigates how nine widely used LLMs allocate knowledge between local context and global parameters when answering open-ended questions.
arXiv Detail & Related papers (2024-09-13T00:03:19Z) - Unified View of Grokking, Double Descent and Emergent Abilities: A
Perspective from Circuits Competition [83.13280812128411]
Recent studies have uncovered intriguing phenomena in deep learning, such as grokking, double descent, and emergent abilities in large language models.
We present a comprehensive framework that provides a unified view of these three phenomena, focusing on the competition between memorization and generalization circuits.
arXiv Detail & Related papers (2024-02-23T08:14:36Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - Prompt Learning With Knowledge Memorizing Prototypes For Generalized
Few-Shot Intent Detection [22.653220906899612]
Generalized Few-Shot Intent Detection (GFSID) is challenging and realistic because it needs to categorize both seen and novel intents simultaneously.
Previous GFSID methods rely on the episodic learning paradigm.
We propose to convert the GFSID task into the class incremental learning paradigm.
arXiv Detail & Related papers (2023-09-10T09:16:38Z) - Temporal Knowledge Graph Forecasting Without Knowledge Using In-Context
Learning [23.971206470486468]
We present a framework that converts relevant historical facts into prompts and generates ranked predictions using token probabilities.
Surprisingly, we observe that LLMs, out-of-the-box, perform on par with state-of-the-art TKG models.
We also discover that using numerical indices instead of entity/relation names, does not significantly affect the performance.
arXiv Detail & Related papers (2023-05-17T23:50:28Z) - Investigating Forgetting in Pre-Trained Representations Through
Continual Learning [51.30807066570425]
We study the effect of representation forgetting on the generality of pre-trained language models.
We find that the generality is destructed in various pre-trained LMs, and syntactic and semantic knowledge is forgotten through continual learning.
arXiv Detail & Related papers (2023-05-10T08:27:59Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.