A European Multi-Center Breast Cancer MRI Dataset
- URL: http://arxiv.org/abs/2506.00474v1
- Date: Sat, 31 May 2025 08:45:02 GMT
- Title: A European Multi-Center Breast Cancer MRI Dataset
- Authors: Gustav Müller-Franzes, Lorena Escudero Sánchez, Nicholas Payne, Alexandra Athanasiou, Michael Kalogeropoulos, Aitor Lopez, Alfredo Miguel Soro Busto, Julia Camps Herrero, Nika Rasoolzadeh, Tianyu Zhang, Ritse Mann, Debora Jutz, Maike Bode, Christiane Kuhl, Wouter Veldhuis, Oliver Lester Saldanha, JieFu Zhu, Jakob Nikolas Kather, Daniel Truhn, Fiona J. Gilbert,
- Abstract summary: The ODELIA consortium has made this multi-centre dataset publicly available to assist in developing AI tools for the detection of breast cancer on MRI.<n>Recent guidelines by the European Society of Breast Imaging recommend breast MRI as a supplemental screening tool for women with dense breast tissue.<n>The ODELIA consortium has made this multi-centre dataset publicly available to assist in developing AI tools for the detection of breast cancer on MRI.
- Score: 32.81686559528397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting breast cancer early is of the utmost importance to effectively treat the millions of women afflicted by breast cancer worldwide every year. Although mammography is the primary imaging modality for screening breast cancer, there is an increasing interest in adding magnetic resonance imaging (MRI) to screening programmes, particularly for women at high risk. Recent guidelines by the European Society of Breast Imaging (EUSOBI) recommended breast MRI as a supplemental screening tool for women with dense breast tissue. However, acquiring and reading MRI scans requires significantly more time from expert radiologists. This highlights the need to develop new automated methods to detect cancer accurately using MRI and Artificial Intelligence (AI), which have the potential to support radiologists in breast MRI interpretation and classification and help detect cancer earlier. For this reason, the ODELIA consortium has made this multi-centre dataset publicly available to assist in developing AI tools for the detection of breast cancer on MRI.
Related papers
- Towards order of magnitude X-ray dose reduction in breast cancer imaging using phase contrast and deep denoising [5.618529985480756]
Phase-contrast computed tomography (PCT) has been shown to produce higher-quality images at lower doses.<n>Deep learning-based image denoising can further reduce the radiation dose by a factor of 16 or more, without any loss of image quality.
arXiv Detail & Related papers (2025-05-09T06:15:28Z) - A Large Model for Non-invasive and Personalized Management of Breast Cancer from Multiparametric MRI [19.252851972152957]
We develop a large mixture-of-modality-experts model (MOME) that integrates multi-parametric MRI information within a unified structure.<n>MOME matches four senior radiologists' performance in identifying breast cancer and outperforms a junior radiologist.
arXiv Detail & Related papers (2024-08-08T05:04:13Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Longitudinal Mammogram Risk Prediction [6.28887425442237]
We extend a state-of-the-art machine learning model to ingest an arbitrary number of longitudinal mammograms and predict future breast cancer risk.
Our results show that longer histories (e.g., up to four prior annual mammograms) can significantly boost the accuracy of predicting future breast cancer risk.
arXiv Detail & Related papers (2024-04-29T19:52:09Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - RADIFUSION: A multi-radiomics deep learning based breast cancer risk
prediction model using sequential mammographic images with image attention
and bilateral asymmetry refinement [0.36355629235144304]
Our study highlights the importance of various deep learning mechanisms, such as image attention radiomic features, gating mechanism, and bilateral asymmetry-based fine-tuning.
Our findings suggest that RADIfusion can provide clinicians with a powerful tool for breast cancer risk assessment.
arXiv Detail & Related papers (2023-04-01T08:18:13Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
Computer-aided detection systems based on deep learning have shown good performance in breast cancer detection.
High-density breasts show poorer detection performance since dense tissues can mask or even simulate masses.
This study aims to improve the mass detection performance in high-density breasts using synthetic high-density full-field digital mammograms.
arXiv Detail & Related papers (2022-09-20T15:57:12Z) - Deep Integrated Pipeline of Segmentation Leading to Classification for
Automated Detection of Breast Cancer from Breast Ultrasound Images [0.0]
The proposed framework integrates ultrasonography image preprocessing with Simple Linear Iterative Clustering (SLIC) to tackle the complex artifact of Breast Ultrasonography Images.
The proposed automated pipeline can be effectively implemented to assist medical practitioners in making more accurate and timely diagnoses of breast cancer.
arXiv Detail & Related papers (2021-10-26T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.