Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction
- URL: http://arxiv.org/abs/2405.07854v1
- Date: Mon, 13 May 2024 15:40:56 GMT
- Title: Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction
- Authors: Chi-en Amy Tai, Alexander Wong,
- Abstract summary: Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
- Score: 71.91773485443125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In 2020, 685,000 deaths across the world were attributed to breast cancer, underscoring the critical need for innovative and effective breast cancer treatment. Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer, attributed to its efficacy in shrinking large tumors and leading to pathologic complete response. However, the current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts which contain inherent biases and significant uncertainty. A recent study, utilizing volumetric deep radiomic features extracted from synthetic correlated diffusion imaging (CDI$^s$), demonstrated significant potential in noninvasive breast cancer pathologic complete response prediction. Inspired by the positive outcomes of optimizing CDI$^s$ for prostate cancer delineation, this research investigates the application of optimized CDI$^s$ to enhance breast cancer pathologic complete response prediction. Using multiparametric MRI that fuses optimized CDI$^s$ with diffusion-weighted imaging (DWI), we obtain a leave-one-out cross-validation accuracy of 93.28%, over 5.5% higher than that previously reported.
Related papers
- Radiomics-guided Multimodal Self-attention Network for Predicting Pathological Complete Response in Breast MRI [3.6852491526879687]
This study presents a model that predicts pCR in breast cancer patients using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) maps.
Our approach extracts features from both DCE MRI and ADC using an encoder with a self-attention mechanism, leveraging radiomics to guide feature extraction from tumor-related regions.
arXiv Detail & Related papers (2024-06-05T04:49:55Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
We show that the best AUC is achieved by the CDI$s$ - optimized modality, outperforming the best gold-standard modality by 0.0044.
Notably, the optimized CDI$s$ modality also achieves AUC values over 0.02 higher than the Unoptimized CDI$s$ value.
arXiv Detail & Related papers (2024-05-13T16:07:58Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Non-Linear Self Augmentation Deep Pipeline for Cancer Treatment outcome
Prediction [7.455416595124159]
Authors present an innovative strategy that harnesses a non-linear cellular architecture in conjunction with a deep downstream classifier.
This approach aims to carefully select and enhance 2D features extracted from chest-abdomen CT images, thereby improving the prediction of treatment outcomes.
The proposed pipeline has been meticulously designed to seamlessly integrate with an advanced embedded Point of Care system.
arXiv Detail & Related papers (2023-07-26T15:01:26Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.