Graph Evidential Learning for Anomaly Detection
- URL: http://arxiv.org/abs/2506.00594v1
- Date: Sat, 31 May 2025 15:06:42 GMT
- Title: Graph Evidential Learning for Anomaly Detection
- Authors: Chunyu Wei, Wenji Hu, Xingjia Hao, Yunhai Wang, Yueguo Chen, Bing Bai, Fei Wang,
- Abstract summary: We propose Graph Evidential Learning (GEL) to redefine the reconstruction process through evidential learning.<n>GEL quantifies two types of uncertainty: graph uncertainty and reconstruction uncertainty, incorporating them into the anomaly scoring mechanism.<n>GEL achieves state-of-the-art performance while maintaining high robustness against noise and structural perturbations.
- Score: 19.046244103954855
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph anomaly detection faces significant challenges due to the scarcity of reliable anomaly-labeled datasets, driving the development of unsupervised methods. Graph autoencoders (GAEs) have emerged as a dominant approach by reconstructing graph structures and node features while deriving anomaly scores from reconstruction errors. However, relying solely on reconstruction error for anomaly detection has limitations, as it increases the sensitivity to noise and overfitting. To address these issues, we propose Graph Evidential Learning (GEL), a probabilistic framework that redefines the reconstruction process through evidential learning. By modeling node features and graph topology using evidential distributions, GEL quantifies two types of uncertainty: graph uncertainty and reconstruction uncertainty, incorporating them into the anomaly scoring mechanism. Extensive experiments demonstrate that GEL achieves state-of-the-art performance while maintaining high robustness against noise and structural perturbations.
Related papers
- Towards Anomaly-Aware Pre-Training and Fine-Tuning for Graph Anomaly Detection [59.042018542376596]
Graph anomaly detection (GAD) has garnered increasing attention in recent years, yet remains challenging due to two key factors.<n>Anomaly-Aware Pre-Training and Fine-Tuning (APF) is a framework to mitigate the challenges in GAD.<n> Comprehensive experiments on 10 benchmark datasets validate the superior performance of APF in comparison to state-of-the-art baselines.
arXiv Detail & Related papers (2025-04-19T09:57:35Z) - Semi-supervised Anomaly Detection with Extremely Limited Labels in Dynamic Graphs [5.415950005432774]
We propose a novel GAD framework (EL$2$-DGAD) to tackle anomaly detection problem in dynamic graphs with extremely limited labels.<n>Specifically, a transformer-based graph encoder model is designed to more effectively preserve evolving graph structures beyond the local neighborhood.
arXiv Detail & Related papers (2025-01-25T02:35:48Z) - UMGAD: Unsupervised Multiplex Graph Anomaly Detection [40.17829938834783]
We propose a novel Unsupervised Multiplex Graph Anomaly Detection method, named UMGAD.<n>We first learn multi-relational correlations among nodes in multiplex heterogeneous graphs.<n>Then, to further extract abnormal information, we generate attribute-level and subgraph-level augmented-view graphs.
arXiv Detail & Related papers (2024-11-19T15:15:45Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - Few-shot Message-Enhanced Contrastive Learning for Graph Anomaly
Detection [15.757864894708364]
Graph anomaly detection plays a crucial role in identifying exceptional instances in graph data that deviate significantly from the majority.
We propose a novel few-shot Graph Anomaly Detection model called FMGAD.
We show that FMGAD can achieve better performance than other state-of-the-art methods, regardless of artificially injected anomalies or domain-organic anomalies.
arXiv Detail & Related papers (2023-11-17T07:49:20Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable dissimilarity compared to the majority in a collection.
We propose a Self-Interpretable Graph aNomaly dETection model ( SIGNET) that detects anomalous graphs as well as generates informative explanations simultaneously.
arXiv Detail & Related papers (2023-10-25T10:10:07Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
We propose a new graph anomaly detection framework on attributed networks via substructure awareness (ARISE)
ARISE focuses on the substructures in the graph to discern abnormalities.
Experiments show that ARISE greatly improves detection performance compared to state-of-the-art attributed networks anomaly detection (ANAD) algorithms.
arXiv Detail & Related papers (2022-11-28T12:17:40Z) - Bayesian Inductive Learner for Graph Resiliency under uncertainty [1.9254132307399257]
We propose a Bayesian graph neural network-based framework for identifying critical nodes in a large graph.
The fidelity and the gain in computational complexity offered by the framework are illustrated.
arXiv Detail & Related papers (2020-12-26T07:22:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.