LID Models are Actually Accent Classifiers: Implications and Solutions for LID on Accented Speech
- URL: http://arxiv.org/abs/2506.00628v2
- Date: Wed, 11 Jun 2025 03:08:00 GMT
- Title: LID Models are Actually Accent Classifiers: Implications and Solutions for LID on Accented Speech
- Authors: Niyati Bafna, Matthew Wiesner,
- Abstract summary: Prior research indicates that LID model performance significantly declines on accented speech.<n>We identify a common failure mode on accented speech whereby LID systems often misclassify L2 accented speech as the speaker's native language or a related language.<n>We present an approach that integrates sequence-level information into our model without relying on monolingual ASR systems.
- Score: 4.654709537754806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prior research indicates that LID model performance significantly declines on accented speech; however, the specific causes, extent, and characterization of these errors remain under-explored. (i) We identify a common failure mode on accented speech whereby LID systems often misclassify L2 accented speech as the speaker's native language or a related language. (ii) We present evidence suggesting that state-of-the-art models are invariant to permutations of short spans of speech, implying they classify on the basis of short phonotactic features indicative of accent rather than language. Our analysis reveals a simple method to enhance model robustness to accents through input chunking. (iii) We present an approach that integrates sequence-level information into our model without relying on monolingual ASR systems; this reduces accent-language confusion and significantly enhances performance on accented speech while maintaining comparable results on standard LID.
Related papers
- SpeechIQ: Speech Intelligence Quotient Across Cognitive Levels in Voice Understanding Large Language Models [76.07833875692722]
Speech-based Intelligence Quotient (SIQ) is a new form of human cognition-inspired evaluation pipeline for voice understanding large language models.<n>Our framework represents a first-of-its-kind intelligence examination that bridges cognitive principles with voice-oriented benchmarks.
arXiv Detail & Related papers (2025-07-25T15:12:06Z) - MSA-ASR: Efficient Multilingual Speaker Attribution with frozen ASR Models [59.80042864360884]
Speaker-attributed automatic speech recognition (SA-ASR) aims to transcribe speech while assigning transcripts to the corresponding speakers accurately.<n>This paper introduces a novel approach, leveraging a frozen multilingual ASR model to incorporate speaker attribution into the transcriptions.
arXiv Detail & Related papers (2024-11-27T09:01:08Z) - XCB: an effective contextual biasing approach to bias cross-lingual phrases in speech recognition [9.03519622415822]
This study introduces a Cross-lingual Contextual Biasing(XCB) module.
We augment a pre-trained ASR model for the dominant language by integrating an auxiliary language biasing module and a language-specific loss.
Experimental results conducted on our in-house code-switching dataset have validated the efficacy of our approach.
arXiv Detail & Related papers (2024-08-20T04:00:19Z) - An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios [76.11409260727459]
This paper explores the language adaptation capability of ZMM-TTS, a recent SSL-based multilingual TTS system.
We demonstrate that the similarity in phonetics between the pre-training and target languages, as well as the language category, affects the target language's adaptation performance.
arXiv Detail & Related papers (2024-06-13T08:16:52Z) - It's Never Too Late: Fusing Acoustic Information into Large Language
Models for Automatic Speech Recognition [70.77292069313154]
Large language models (LLMs) can be successfully used for generative error correction (GER) on top of the automatic speech recognition (ASR) output.
In this work, we aim to overcome such a limitation by infusing acoustic information before generating the predicted transcription through a novel late fusion solution termed Uncertainty-Aware Dynamic Fusion (UADF)
arXiv Detail & Related papers (2024-02-08T07:21:45Z) - Leveraging Language ID to Calculate Intermediate CTC Loss for Enhanced
Code-Switching Speech Recognition [5.3545957730615905]
We introduce language identification information into the middle layer of the ASR model's encoder.
We aim to generate acoustic features that imply language distinctions in a more implicit way, reducing the model's confusion when dealing with language switching.
arXiv Detail & Related papers (2023-12-15T07:46:35Z) - The Interpreter Understands Your Meaning: End-to-end Spoken Language
Understanding Aided by Speech Translation [13.352795145385645]
Speech translation (ST) is a good means of pretraining speech models for end-to-end spoken language understanding.
We show that our models reach higher performance over baselines on monolingual and multilingual intent classification.
We also create new benchmark datasets for speech summarization and low-resource/zero-shot transfer from English to French or Spanish.
arXiv Detail & Related papers (2023-05-16T17:53:03Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - Is Attention always needed? A Case Study on Language Identification from
Speech [1.162918464251504]
The present study introduces convolutional recurrent neural network (CRNN) based LID.
CRNN based LID is designed to operate on the Mel-frequency Cepstral Coefficient (MFCC) characteristics of audio samples.
The LID model exhibits high-performance levels ranging from 97% to 100% for languages that are linguistically similar.
arXiv Detail & Related papers (2021-10-05T16:38:57Z) - Pre-training for Spoken Language Understanding with Joint Textual and
Phonetic Representation Learning [4.327558819000435]
We propose a novel joint textual-phonetic pre-training approach for learning spoken language representations.
Experimental results on spoken language understanding benchmarks, Fluent Speech Commands and SNIPS, show that the proposed approach significantly outperforms strong baseline models.
arXiv Detail & Related papers (2021-04-21T05:19:13Z) - Towards Relevance and Sequence Modeling in Language Recognition [39.547398348702025]
We propose a neural network framework utilizing short-sequence information in language recognition.
A new model is proposed for incorporating relevance in language recognition, where parts of speech data are weighted more based on their relevance for the language recognition task.
Experiments are performed using the language recognition task in NIST LRE 2017 Challenge using clean, noisy and multi-speaker speech data.
arXiv Detail & Related papers (2020-04-02T18:31:18Z) - Rnn-transducer with language bias for end-to-end Mandarin-English
code-switching speech recognition [58.105818353866354]
We propose an improved recurrent neural network transducer (RNN-T) model with language bias to alleviate the problem.
We use the language identities to bias the model to predict the CS points.
This promotes the model to learn the language identity information directly from transcription, and no additional LID model is needed.
arXiv Detail & Related papers (2020-02-19T12:01:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.