Encouraging Students' Responsible Use of GenAI in Software Engineering Education: A Causal Model and Two Institutional Applications
- URL: http://arxiv.org/abs/2506.00682v1
- Date: Sat, 31 May 2025 19:27:40 GMT
- Title: Encouraging Students' Responsible Use of GenAI in Software Engineering Education: A Causal Model and Two Institutional Applications
- Authors: Vahid Garousi, Zafar Jafarov, Aytan Movsumova, Atif Namazov, Huseyn Mirzayev,
- Abstract summary: generative AI (GenAI) tools such as ChatGPT and GitHub Copilot become pervasive in education.<n>Concerns are rising about students using them to complete rather than learn from coursework.<n>This paper proposes and empirically applies a causal model to help educators scaffold responsible GenAI use in Software Engineering education.
- Score: 1.1511012020557325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context: As generative AI (GenAI) tools such as ChatGPT and GitHub Copilot become pervasive in education, concerns are rising about students using them to complete rather than learn from coursework-risking overreliance, reduced critical thinking, and long-term skill deficits. Objective: This paper proposes and empirically applies a causal model to help educators scaffold responsible GenAI use in Software Engineering (SE) education. The model identifies how professor actions, student factors, and GenAI tool characteristics influence students' usage of GenAI tools. Method: Using a design-based research approach, we applied the model in two contexts: (1) revising four extensive lab assignments of a final-year Software Testing course at Queen's University Belfast (QUB), and (2) embedding GenAI-related competencies into the curriculum of a newly developed SE BSc program at Azerbaijan Technical University (AzTU). Interventions included GenAI usage declarations, output validation tasks, peer-review of AI artifacts, and career-relevant messaging. Results: In the course-level case, instructor observations and student artifacts indicated increased critical engagement with GenAI, reduced passive reliance, and improved awareness of validation practices. In the curriculum-level case, the model guided integration of GenAI learning outcomes across multiple modules and levels, enabling longitudinal scaffolding of AI literacy. Conclusion: The causal model served as both a design scaffold and a reflection tool. It helped align GenAI-related pedagogy with SE education goals and can offer a useful framework for instructors and curriculum designers navigating the challenges of GenAI-era education.
Related papers
- Using Generative AI in Software Design Education: An Experience Report [0.6827423171182154]
Students were required to use GenAI to help complete a team-based assignment.<n>Students identified numerous ways ChatGPT helped them in their design process.<n>We identified several key lessons for educators in how to deploy GenAI in a software design class effectively.
arXiv Detail & Related papers (2025-06-26T18:40:16Z) - From Recall to Reasoning: Automated Question Generation for Deeper Math Learning through Large Language Models [44.99833362998488]
We investigated the first steps for optimizing content creation for advanced math.<n>We looked at the ability of GenAI to produce high-quality practice problems that are relevant to the course content.
arXiv Detail & Related papers (2025-05-17T08:30:10Z) - Evaluating the AI-Lab Intervention: Impact on Student Perception and Use of Generative AI in Early Undergraduate Computer Science Courses [0.0]
Generative AI (GenAI) is rapidly entering computer science education.<n>Concerns about overreliance coexist with a gap in research on structured scaffolding to guide tool use in formal courses.<n>This study examines the impact of a dedicated "AI-Lab" intervention on undergraduate students.
arXiv Detail & Related papers (2025-04-30T18:12:42Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.<n>We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.<n>We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - From Automation to Cognition: Redefining the Roles of Educators and Generative AI in Computing Education [2.0628700367476203]
Generative Artificial Intelligence (GenAI) offers opportunities to revolutionise teaching and learning in Computing Education (CE)<n>However, educators have expressed concerns that students may over-rely on GenAI and use these tools to generate solutions without engaging in the learning process.<n>This paper describes our experiences with using GenAI in CS-focused educational settings and the changes we have implemented accordingly in our teaching.
arXiv Detail & Related papers (2024-12-16T03:36:25Z) - Early Adoption of Generative Artificial Intelligence in Computing Education: Emergent Student Use Cases and Perspectives in 2023 [38.83649319653387]
There is limited prior research on computing students' use and perceptions of GenAI.
We surveyed all computer science majors in a small engineering-focused R1 university.
We discuss the impact of our findings on the emerging conversation around GenAI and education.
arXiv Detail & Related papers (2024-11-17T20:17:47Z) - LLMs Integration in Software Engineering Team Projects: Roles, Impact, and a Pedagogical Design Space for AI Tools in Computing Education [7.058964784190549]
This work takes a pedagogical lens to explore the implications of generative AI (GenAI) models and tools, such as ChatGPT and GitHub Copilot.
Our results address a particular gap in understanding the role and implications of GenAI on teamwork, team-efficacy, and team dynamics.
arXiv Detail & Related papers (2024-10-30T14:43:33Z) - Hey GPT, Can You be More Racist? Analysis from Crowdsourced Attempts to Elicit Biased Content from Generative AI [41.96102438774773]
This work presents the findings from a university-level competition, which challenged participants to design prompts for eliciting biased outputs from GenAI tools.
We quantitatively and qualitatively analyze the competition submissions and identify a diverse set of biases in GenAI and strategies employed by participants to induce bias in GenAI.
arXiv Detail & Related papers (2024-10-20T18:44:45Z) - Model-based Maintenance and Evolution with GenAI: A Look into the Future [47.93555901495955]
We argue that Generative Artificial Intelligence (GenAI) can be used as a means to address the limitations of Model-Based Engineering (MBM&E)
We propose that GenAI can be used in MBM&E for: reducing engineers' learning curve, maximizing efficiency with recommendations, or serving as a reasoning tool to understand domain problems.
arXiv Detail & Related papers (2024-07-09T23:13:26Z) - Genetic Auto-prompt Learning for Pre-trained Code Intelligence Language Models [54.58108387797138]
We investigate the effectiveness of prompt learning in code intelligence tasks.
Existing automatic prompt design methods are very limited to code intelligence tasks.
We propose Genetic Auto Prompt (GenAP) which utilizes an elaborate genetic algorithm to automatically design prompts.
arXiv Detail & Related papers (2024-03-20T13:37:00Z) - Identifying and Mitigating the Security Risks of Generative AI [179.2384121957896]
This paper reports the findings of a workshop held at Google on the dual-use dilemma posed by GenAI.
GenAI can be used just as well by attackers to generate new attacks and increase the velocity and efficacy of existing attacks.
We discuss short-term and long-term goals for the community on this topic.
arXiv Detail & Related papers (2023-08-28T18:51:09Z) - Innovating Computer Programming Pedagogy: The AI-Lab Framework for
Generative AI Adoption [0.0]
We introduce "AI-Lab," a framework for guiding students in effectively leveraging GenAI within core programming courses.
By identifying and rectifying GenAI's errors, students enrich their learning process.
For educators, AI-Lab provides mechanisms to explore students' perceptions of GenAI's role in their learning experience.
arXiv Detail & Related papers (2023-08-23T17:20:37Z) - Investigating Explainability of Generative AI for Code through
Scenario-based Design [44.44517254181818]
generative AI (GenAI) technologies are maturing and being applied to application domains such as software engineering.
We conduct 9 workshops with 43 software engineers in which real examples from state-of-the-art generative AI models were used to elicit users' explainability needs.
Our work explores explainability needs for GenAI for code and demonstrates how human-centered approaches can drive the technical development of XAI in novel domains.
arXiv Detail & Related papers (2022-02-10T08:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.