RelDiff: Relational Data Generative Modeling with Graph-Based Diffusion Models
- URL: http://arxiv.org/abs/2506.00710v1
- Date: Sat, 31 May 2025 21:01:02 GMT
- Title: RelDiff: Relational Data Generative Modeling with Graph-Based Diffusion Models
- Authors: Valter Hudovernik, Minkai Xu, Juntong Shi, Lovro Šubelj, Stefano Ermon, Erik Štrumbelj, Jure Leskovec,
- Abstract summary: RelDiff is a novel diffusion generative model that synthesizes complete relational databases by explicitly modeling their foreign key graph structure.<n>RelDiff consistently outperforms prior methods in producing realistic and coherent synthetic relational databases.
- Score: 83.6013616017646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world databases are predominantly relational, comprising multiple interlinked tables that contain complex structural and statistical dependencies. Learning generative models on relational data has shown great promise in generating synthetic data and imputing missing values. However, existing methods often struggle to capture this complexity, typically reducing relational data to conditionally generated flat tables and imposing limiting structural assumptions. To address these limitations, we introduce RelDiff, a novel diffusion generative model that synthesizes complete relational databases by explicitly modeling their foreign key graph structure. RelDiff combines a joint graph-conditioned diffusion process across all tables for attribute synthesis, and a $2K+$SBM graph generator based on the Stochastic Block Model for structure generation. The decomposition of graph structure and relational attributes ensures both high fidelity and referential integrity, both of which are crucial aspects of synthetic relational database generation. Experiments on 11 benchmark datasets demonstrate that RelDiff consistently outperforms prior methods in producing realistic and coherent synthetic relational databases. Code is available at https://github.com/ValterH/RelDiff.
Related papers
- Generating Synthetic Relational Tabular Data via Structural Causal Models [0.0]
We develop a novel framework that generates realistic synthetic relational data including causal relationships across tables.<n>Our experiments confirm that this framework is able to construct relational datasets with complex inter-table dependencies mimicking real-world scenarios.
arXiv Detail & Related papers (2025-07-04T12:27:23Z) - Relational Deep Learning: Challenges, Foundations and Next-Generation Architectures [50.46688111973999]
Graph machine learning has led to a significant increase in the capabilities of models that learn on arbitrary graph-structured data.<n>We present a new blueprint that enables end-to-end representation of'relational entity graphs' without traditional engineering feature.<n>We discuss key challenges including large-scale multi-table integration and the complexities of modeling temporal dynamics and heterogeneous data.
arXiv Detail & Related papers (2025-06-19T23:51:38Z) - Joint Relational Database Generation via Graph-Conditional Diffusion Models [44.06390394789874]
Building generative models for databases (RDBs) is important for applications like privacy's data release and real datasets.<n>Most prior either focuses on single-table generation or relies on autoregressive factorizations that impose a fixed table order and generate tables sequentially.<n>We propose a fundamentally different approach: jointly modeling all tables in an RDB without imposing any order.
arXiv Detail & Related papers (2025-05-22T11:12:56Z) - Graph Conditional Flow Matching for Relational Data Generation [0.8823131482758475]
We propose a generative model for relational data that generates the content of a relational dataset given the graph formed by the foreign-key relationships.<n>We do this by learning a deep generative model of the content of the whole relational database by flow matching.<n>Our method is flexible, as it can support relational datasets with complex structures, and expressive, as the generation of each record can be influenced by any other record within the same connected component.
arXiv Detail & Related papers (2025-05-21T15:45:15Z) - LLM-TabFlow: Synthetic Tabular Data Generation with Inter-column Logical Relationship Preservation [49.898152180805454]
This study is the first to explicitly address inter-column relationship preservation in synthetic tabular data generation.<n>LLM-TabFlow is a novel approach that captures complex inter-column relationships and compress data, while using Score-based Diffusion to model the distribution of the compressed data in latent space.<n>Our results show that LLM-TabFlow outperforms all baselines, fully preserving inter-column relationships while achieving the best balance between data fidelity, utility, and privacy.
arXiv Detail & Related papers (2025-03-04T00:47:52Z) - TabDiff: a Mixed-type Diffusion Model for Tabular Data Generation [91.50296404732902]
We introduce TabDiff, a joint diffusion framework that models all mixed-type distributions of tabular data in one model.<n>Our key innovation is the development of a joint continuous-time diffusion process for numerical and categorical data.<n>TabDiff achieves superior average performance over existing competitive baselines, with up to $22.5%$ improvement over the state-of-the-art model on pair-wise column correlation estimations.
arXiv Detail & Related papers (2024-10-27T22:58:47Z) - Differentially Private Synthetic Data Generation for Relational Databases [9.532509662034062]
We introduce the first-of-its-kind algorithm that can be combined with any existing differentially private (DP) synthetic data generation mechanisms.<n>Our algorithm iteratively refines the relationship between individual synthetic tables to minimize their approximation errors.
arXiv Detail & Related papers (2024-05-29T00:25:07Z) - GFS: Graph-based Feature Synthesis for Prediction over Relational
Databases [39.975491511390985]
We propose a novel framework called Graph-based Feature Synthesis (GFS)
GFS formulates relational database as a heterogeneous graph database.
In an experiment over four real-world multi-table relational databases, GFS outperforms previous methods designed for relational databases.
arXiv Detail & Related papers (2023-12-04T16:54:40Z) - Generating Realistic Synthetic Relational Data through Graph Variational
Autoencoders [47.89542334125886]
We combine the variational autoencoder framework with graph neural networks to generate realistic synthetic relational databases.
The results indicate that real databases' structures are accurately preserved in the resulting synthetic datasets.
arXiv Detail & Related papers (2022-11-30T10:40:44Z) - HittER: Hierarchical Transformers for Knowledge Graph Embeddings [85.93509934018499]
We propose Hitt to learn representations of entities and relations in a complex knowledge graph.
Experimental results show that Hitt achieves new state-of-the-art results on multiple link prediction.
We additionally propose a simple approach to integrate Hitt into BERT and demonstrate its effectiveness on two Freebase factoid answering datasets.
arXiv Detail & Related papers (2020-08-28T18:58:15Z) - On Embeddings in Relational Databases [11.52782249184251]
We address the problem of learning a distributed representation of entities in a relational database using a low-dimensional embedding.
Recent methods for learning embedding constitute of a naive approach to consider complete denormalization of the database by relationalizing the full join of all tables and representing as a knowledge graph.
In this paper we demonstrate; a better methodology for learning representations by exploiting the underlying semantics of columns in a table while using the relation joins and the latent inter-row relationships.
arXiv Detail & Related papers (2020-05-13T17:21:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.