Generating Synthetic Relational Tabular Data via Structural Causal Models
- URL: http://arxiv.org/abs/2507.03528v1
- Date: Fri, 04 Jul 2025 12:27:23 GMT
- Title: Generating Synthetic Relational Tabular Data via Structural Causal Models
- Authors: Frederik Hoppe, Astrid Franz, Lars Kleinemeier, Udo Göbel,
- Abstract summary: We develop a novel framework that generates realistic synthetic relational data including causal relationships across tables.<n>Our experiments confirm that this framework is able to construct relational datasets with complex inter-table dependencies mimicking real-world scenarios.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic tabular data generation has received increasing attention in recent years, particularly with the emergence of foundation models for tabular data. The breakthrough success of TabPFN (Hollmann et al.,2025), which leverages vast quantities of synthetic tabular datasets derived from structural causal models (SCMs), demonstrates the critical role synthetic data plays in developing powerful tabular foundation models. However, most real-world tabular data exists in relational formats spanning multiple interconnected tables - a structure not adequately addressed by current generation methods. In this work, we extend the SCM-based approach by developing a novel framework that generates realistic synthetic relational tabular data including causal relationships across tables. Our experiments confirm that this framework is able to construct relational datasets with complex inter-table dependencies mimicking real-world scenarios.
Related papers
- Relational Deep Learning: Challenges, Foundations and Next-Generation Architectures [50.46688111973999]
Graph machine learning has led to a significant increase in the capabilities of models that learn on arbitrary graph-structured data.<n>We present a new blueprint that enables end-to-end representation of'relational entity graphs' without traditional engineering feature.<n>We discuss key challenges including large-scale multi-table integration and the complexities of modeling temporal dynamics and heterogeneous data.
arXiv Detail & Related papers (2025-06-19T23:51:38Z) - RelDiff: Relational Data Generative Modeling with Graph-Based Diffusion Models [83.6013616017646]
RelDiff is a novel diffusion generative model that synthesizes complete relational databases by explicitly modeling their foreign key graph structure.<n>RelDiff consistently outperforms prior methods in producing realistic and coherent synthetic relational databases.
arXiv Detail & Related papers (2025-05-31T21:01:02Z) - Graph Conditional Flow Matching for Relational Data Generation [0.8823131482758475]
We propose a generative model for relational data that generates the content of a relational dataset given the graph formed by the foreign-key relationships.<n>We do this by learning a deep generative model of the content of the whole relational database by flow matching.<n>Our method is flexible, as it can support relational datasets with complex structures, and expressive, as the generation of each record can be influenced by any other record within the same connected component.
arXiv Detail & Related papers (2025-05-21T15:45:15Z) - LLM-TabFlow: Synthetic Tabular Data Generation with Inter-column Logical Relationship Preservation [49.898152180805454]
This study is the first to explicitly address inter-column relationship preservation in synthetic tabular data generation.<n>LLM-TabFlow is a novel approach that captures complex inter-column relationships and compress data, while using Score-based Diffusion to model the distribution of the compressed data in latent space.<n>Our results show that LLM-TabFlow outperforms all baselines, fully preserving inter-column relationships while achieving the best balance between data fidelity, utility, and privacy.
arXiv Detail & Related papers (2025-03-04T00:47:52Z) - Evaluating Inter-Column Logical Relationships in Synthetic Tabular Data Generation [49.898152180805454]
This paper proposes three evaluation metrics designed to assess the preservation of logical relationships.<n>We validate these metrics by assessing the performance of both classical and state-of-the-art generation methods on a real-world industrial dataset.
arXiv Detail & Related papers (2025-02-06T13:13:26Z) - LaTable: Towards Large Tabular Models [63.995130144110156]
Tabular generative foundation models are hard to build due to the heterogeneous feature spaces of different datasets.
LaTable is a novel diffusion model that addresses these challenges and can be trained across different datasets.
We find that LaTable outperforms baselines on in-distribution generation, and that finetuning LaTable can generate out-of-distribution datasets better with fewer samples.
arXiv Detail & Related papers (2024-06-25T16:03:50Z) - CTSyn: A Foundational Model for Cross Tabular Data Generation [9.568990880984813]
Cross-Table Synthesizer (CTSyn) is a diffusion-based foundational model tailored for tabular data generation.
CTSyn significantly outperforms existing table synthesizers in utility and diversity.
It also uniquely enhances performances of downstream machine learning beyond what is achievable with real data.
arXiv Detail & Related papers (2024-06-07T04:04:21Z) - REaLTabFormer: Generating Realistic Relational and Tabular Data using
Transformers [0.0]
We introduce REaLTabFormer (Realistic and Tabular Transformer), a synthetic data generation model.
It first creates a parent table using an autoregressive GPT-2 model, then generates the relational dataset conditioned on the parent table using a sequence-to-sequence model.
Experiments using real-world datasets show that REaLTabFormer captures the relational structure better than a model baseline.
arXiv Detail & Related papers (2023-02-04T00:32:50Z) - Generating Realistic Synthetic Relational Data through Graph Variational
Autoencoders [47.89542334125886]
We combine the variational autoencoder framework with graph neural networks to generate realistic synthetic relational databases.
The results indicate that real databases' structures are accurately preserved in the resulting synthetic datasets.
arXiv Detail & Related papers (2022-11-30T10:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.