論文の概要: From Plain Text to Poetic Form: Generating Metrically-Constrained Sanskrit Verses
- arxiv url: http://arxiv.org/abs/2506.00815v1
- Date: Sun, 01 Jun 2025 03:35:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 04:22:50.681695
- Title: From Plain Text to Poetic Form: Generating Metrically-Constrained Sanskrit Verses
- Title(参考訳): 平文から詩形へ:機械的に制約されたサンスクリット動詞を生成する
- Authors: Manoj Balaji Jagadeeshan, Samarth Bhatia, Pretam Ray, Harshul Raj Surana, Akhil Rajeev P, Priya Mishra, Annarao Kulkarni, Ganesh Ramakrishnan, Prathosh AP, Pawan Goyal,
- Abstract要約: 我々は、英語の散文を構造化サンスクリット詩に翻訳するためのデータセットを提案する。
我々は,距離や意味の忠実度に合わせた制約付き復号法と命令ベースの微調整について検討する。
- 参考スコア(独自算出の注目度): 22.08984009109879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language models (LLMs) have significantly improved natural language generation, including creative tasks like poetry composition. However, most progress remains concentrated in high-resource languages. This raises an important question: Can LLMs be adapted for structured poetic generation in a low-resource, morphologically rich language such as Sanskrit? In this work, we introduce a dataset designed for translating English prose into structured Sanskrit verse, with strict adherence to classical metrical patterns, particularly the Anushtub meter. We evaluate a range of generative models-both open-source and proprietary-under multiple settings. Specifically, we explore constrained decoding strategies and instruction-based fine-tuning tailored to metrical and semantic fidelity. Our decoding approach achieves over 99% accuracy in producing syntactically valid poetic forms, substantially outperforming general-purpose models in meter conformity. Meanwhile, instruction-tuned variants show improved alignment with source meaning and poetic style, as supported by human assessments, albeit with marginal trade-offs in metrical precision.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、詩構成のような創造的なタスクを含む自然言語生成を大幅に改善した。
しかし、ほとんどの進歩はハイソース言語に集中している。
LLMは、サンスクリットのような低リソースで形態学的に豊かな言語で構造化された詩生成に適応できるだろうか?
本研究では,古典的計量パターン,特にAnushtub meterに厳密に固執したサンスクリット詩に英語の散文を翻訳するためのデータセットを提案する。
オープンソースとプロプライエタリの両方で生成モデルを評価する。
具体的には,メカニカルおよびセマンティックの忠実度に合わせて,制約付き復号法と命令ベースの微調整について検討する。
我々の復号法は、構文的に有効な詩形式を生成する上で99%以上の精度を達成し、メーター整合性における汎用モデルを大幅に上回っている。
一方、指示調の変種は、計量的精度の限界トレードオフにもかかわらず、人間の評価によって支持されるように、ソースの意味と詩的スタイルとの整合性を改善した。
関連論文リスト
- Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
機械生成コンテンツは、学術プラジャリズムや誤報の拡散といった課題を提起する。
これらの課題を克服するために、新しい方法論とデータセットを導入します。
人間の筆記スタイルをエミュレートするエンコーダデコーダモデルであるMhBARTを提案する。
また,PDTB前処理による談話解析を統合し,構造的特徴を符号化するモデルであるDTransformerを提案する。
論文 参考訳(メタデータ) (2024-12-17T08:47:41Z) - GPT Czech Poet: Generation of Czech Poetic Strophes with Language Models [0.4444634303550442]
チェコ語で詩を生成するための新しいモデルを提案する。
詩文中のストロフェパラメータを明示的に指定することで生成プロセスの指導がモデルの有効性を強く向上することを示す。
論文 参考訳(メタデータ) (2024-06-18T06:19:45Z) - Learning to Generate Text in Arbitrary Writing Styles [6.7308816341849695]
言語モデルは、潜在的に小さな文章サンプルに基づいて、著者固有のスタイルでテキストを作成することが望ましい。
本稿では,テクスチャ的特徴を捉えた対照的に訓練された表現を用いて,ターゲットスタイルのテキストを生成するための言語モデルを提案する。
論文 参考訳(メタデータ) (2023-12-28T18:58:52Z) - PoetryDiffusion: Towards Joint Semantic and Metrical Manipulation in
Poetry Generation [58.36105306993046]
制御可能なテキスト生成は自然言語生成(NLG)において困難かつ有意義な分野である
本稿では,ソネット生成のための拡散モデルと中国語のSongCi詩の創始について述べる。
本モデルでは,人的評価だけでなく,意味的,計量的,総合的な性能の自動評価において,既存のモデルよりも優れる。
論文 参考訳(メタデータ) (2023-06-14T11:57:31Z) - Romanization-based Large-scale Adaptation of Multilingual Language
Models [124.57923286144515]
大規模多言語事前学習言語モデル (mPLMs) は,NLPにおける多言語間移動のデファクトステートとなっている。
我々は、mPLMをローマン化および非ロマン化した14の低リソース言語コーパスに適用するためのデータとパラメータ効率の戦略を多数検討し、比較した。
以上の結果から, UROMAN をベースとしたトランスリテラルは,多くの言語で高い性能を達成できることがわかった。
論文 参考訳(メタデータ) (2023-04-18T09:58:34Z) - On The Ingredients of an Effective Zero-shot Semantic Parser [95.01623036661468]
我々は、標準発話とプログラムの訓練例を文法から言い換えて、ゼロショット学習を分析する。
改良された文法,より強力なパラフレーズ,効率的な学習手法を用いて,これらのギャップを埋めることを提案する。
我々のモデルはラベル付きデータゼロの2つの意味解析ベンチマーク(Scholar, Geo)で高い性能を達成する。
論文 参考訳(メタデータ) (2021-10-15T21:41:16Z) - Metrical Tagging in the Wild: Building and Annotating Poetry Corpora
with Rhythmic Features [0.0]
英語とドイツ語に大規模な詩コーパスを提供し,コーパス駆動ニューラルモデルを訓練するためのコーパスを小型化した韻律的特徴をアノテートする。
音節埋め込みを用いた BiLSTM-CRF モデルは, CRF ベースラインと異なるBERT ベースアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-17T16:38:57Z) - GTAE: Graph-Transformer based Auto-Encoders for Linguistic-Constrained
Text Style Transfer [119.70961704127157]
近年,非並列テキストスタイルの転送が研究の関心を集めている。
現在のアプローチでは、元の文の内容やロジックを保存できない。
文を言語グラフとしてモデル化し,グラフレベルで特徴抽出とスタイル転送を行う,グラフトランスフォーマーベースのAuto-GTAEを提案する。
論文 参考訳(メタデータ) (2021-02-01T11:08:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。