Neural Path Guiding with Distribution Factorization
- URL: http://arxiv.org/abs/2506.00839v2
- Date: Wed, 04 Jun 2025 18:10:39 GMT
- Title: Neural Path Guiding with Distribution Factorization
- Authors: Pedro Figueiredo, Qihao He, Nima Khademi Kalantari,
- Abstract summary: We present a neural path guiding method to aid with Monte Carlo (MC) integration in rendering.<n>We propose a simple, but effective, representation that is sufficiently expressive and reasonably fast.<n>Our approach is better than the existing methods, particularly in challenging scenes with complex light transport.
- Score: 5.494450075856114
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a neural path guiding method to aid with Monte Carlo (MC) integration in rendering. Existing neural methods utilize distribution representations that are either fast or expressive, but not both. We propose a simple, but effective, representation that is sufficiently expressive and reasonably fast. Specifically, we break down the 2D distribution over the directional domain into two 1D probability distribution functions (PDF). We propose to model each 1D PDF using a neural network that estimates the distribution at a set of discrete coordinates. The PDF at an arbitrary location can then be evaluated and sampled through interpolation. To train the network, we maximize the similarity of the learned and target distributions. To reduce the variance of the gradient during optimizations and estimate the normalization factor, we propose to cache the incoming radiance using an additional network. Through extensive experiments, we demonstrate that our approach is better than the existing methods, particularly in challenging scenes with complex light transport.
Related papers
- The Sampling-Gaussian for stereo matching [7.9898209414259425]
The soft-argmax operation is widely adopted in neural network-based stereo matching methods.
Previous methods failed to effectively improve the accuracy and even compromises the efficiency of the network.
We propose a novel supervision method for stereo matching, Sampling-Gaussian.
arXiv Detail & Related papers (2024-10-09T03:57:13Z) - Rethinking Score Distillation as a Bridge Between Image Distributions [97.27476302077545]
We show that our method seeks to transport corrupted images (source) to the natural image distribution (target)<n>Our method can be easily applied across many domains, matching or beating the performance of specialized methods.<n>We demonstrate its utility in text-to-2D, text-based NeRF optimization, translating paintings to real images, optical illusion generation, and 3D sketch-to-real.
arXiv Detail & Related papers (2024-06-13T17:59:58Z) - Generative Conditional Distributions by Neural (Entropic) Optimal Transport [12.152228552335798]
We introduce a novel neural entropic optimal transport method designed to learn generative models of conditional distributions.
Our method relies on the minimax training of two neural networks.
Our experiments on real-world datasets show the effectiveness of our algorithm compared to state-of-the-art conditional distribution learning techniques.
arXiv Detail & Related papers (2024-06-04T13:45:35Z) - Deep Generative Sampling in the Dual Divergence Space: A Data-efficient & Interpretative Approach for Generative AI [29.13807697733638]
We build on the remarkable achievements in generative sampling of natural images.
We propose an innovative challenge, potentially overly ambitious, which involves generating samples that resemble images.
The statistical challenge lies in the small sample size, sometimes consisting of a few hundred subjects.
arXiv Detail & Related papers (2024-04-10T22:35:06Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Learning Distributions via Monte-Carlo Marginalization [9.131712404284876]
We propose a novel method to learn intractable distributions from their samples.
The Monte-Carlo Marginalization (MCMarg) is proposed to address this issue.
The proposed approach is a powerful tool to learn complex distributions and the entire process is differentiable.
arXiv Detail & Related papers (2023-08-11T19:08:06Z) - PDE+: Enhancing Generalization via PDE with Adaptive Distributional
Diffusion [66.95761172711073]
generalization of neural networks is a central challenge in machine learning.
We propose to enhance it directly through the underlying function of neural networks, rather than focusing on adjusting input data.
We put this theoretical framework into practice as $textbfPDE+$ ($textbfPDE$ with $textbfA$daptive $textbfD$istributional $textbfD$iffusion)
arXiv Detail & Related papers (2023-05-25T08:23:26Z) - Normalizing flow sampling with Langevin dynamics in the latent space [12.91637880428221]
Normalizing flows (NF) use a continuous generator to map a simple latent (e.g. Gaussian) distribution, towards an empirical target distribution associated with a training data set.
Since standard NF implement differentiable maps, they may suffer from pathological behaviors when targeting complex distributions.
This paper proposes a new Markov chain Monte Carlo algorithm to sample from the target distribution in the latent domain before transporting it back to the target domain.
arXiv Detail & Related papers (2023-05-20T09:31:35Z) - KL Guided Domain Adaptation [88.19298405363452]
Domain adaptation is an important problem and often needed for real-world applications.
A common approach in the domain adaptation literature is to learn a representation of the input that has the same distributions over the source and the target domain.
We show that with a probabilistic representation network, the KL term can be estimated efficiently via minibatch samples.
arXiv Detail & Related papers (2021-06-14T22:24:23Z) - Learning to Match Distributions for Domain Adaptation [116.14838935146004]
This paper proposes Learning to Match (L2M) to automatically learn the cross-domain distribution matching.
L2M reduces the inductive bias by using a meta-network to learn the distribution matching loss in a data-driven way.
Experiments on public datasets substantiate the superiority of L2M over SOTA methods.
arXiv Detail & Related papers (2020-07-17T03:26:13Z) - Embedding Propagation: Smoother Manifold for Few-Shot Classification [131.81692677836202]
We propose to use embedding propagation as an unsupervised non-parametric regularizer for manifold smoothing in few-shot classification.
We empirically show that embedding propagation yields a smoother embedding manifold.
We show that embedding propagation consistently improves the accuracy of the models in multiple semi-supervised learning scenarios by up to 16% points.
arXiv Detail & Related papers (2020-03-09T13:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.