Generative Conditional Distributions by Neural (Entropic) Optimal Transport
- URL: http://arxiv.org/abs/2406.02317v1
- Date: Tue, 4 Jun 2024 13:45:35 GMT
- Title: Generative Conditional Distributions by Neural (Entropic) Optimal Transport
- Authors: Bao Nguyen, Binh Nguyen, Hieu Trung Nguyen, Viet Anh Nguyen,
- Abstract summary: We introduce a novel neural entropic optimal transport method designed to learn generative models of conditional distributions.
Our method relies on the minimax training of two neural networks.
Our experiments on real-world datasets show the effectiveness of our algorithm compared to state-of-the-art conditional distribution learning techniques.
- Score: 12.152228552335798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning conditional distributions is challenging because the desired outcome is not a single distribution but multiple distributions that correspond to multiple instances of the covariates. We introduce a novel neural entropic optimal transport method designed to effectively learn generative models of conditional distributions, particularly in scenarios characterized by limited sample sizes. Our method relies on the minimax training of two neural networks: a generative network parametrizing the inverse cumulative distribution functions of the conditional distributions and another network parametrizing the conditional Kantorovich potential. To prevent overfitting, we regularize the objective function by penalizing the Lipschitz constant of the network output. Our experiments on real-world datasets show the effectiveness of our algorithm compared to state-of-the-art conditional distribution learning techniques. Our implementation can be found at https://github.com/nguyenngocbaocmt02/GENTLE.
Related papers
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - Just One Byte (per gradient): A Note on Low-Bandwidth Decentralized
Language Model Finetuning Using Shared Randomness [86.61582747039053]
Language model training in distributed settings is limited by the communication cost of exchanges.
We extend recent work using shared randomness to perform distributed fine-tuning with low bandwidth.
arXiv Detail & Related papers (2023-06-16T17:59:51Z) - Normalizing flow sampling with Langevin dynamics in the latent space [12.91637880428221]
Normalizing flows (NF) use a continuous generator to map a simple latent (e.g. Gaussian) distribution, towards an empirical target distribution associated with a training data set.
Since standard NF implement differentiable maps, they may suffer from pathological behaviors when targeting complex distributions.
This paper proposes a new Markov chain Monte Carlo algorithm to sample from the target distribution in the latent domain before transporting it back to the target domain.
arXiv Detail & Related papers (2023-05-20T09:31:35Z) - Cooperative Distribution Alignment via JSD Upper Bound [7.071749623370137]
Unsupervised distribution alignment estimates a transformation that maps two or more source distributions to a shared aligned distribution.
This task has many applications including generative modeling, unsupervised domain adaptation, and socially aware learning.
We propose to unify and generalize previous flow-based approaches under a single non-adversarial framework.
arXiv Detail & Related papers (2022-07-05T20:09:03Z) - Adversarial sampling of unknown and high-dimensional conditional
distributions [0.0]
In this paper the sampling method, as well as the inference of the underlying distribution, are handled with a data-driven method known as generative adversarial networks (GAN)
GAN trains two competing neural networks to produce a network that can effectively generate samples from the training set distribution.
It is shown that all the versions of the proposed algorithm effectively sample the target conditional distribution with minimal impact on the quality of the samples.
arXiv Detail & Related papers (2021-11-08T12:23:38Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
Particle filtering is used to compute good nonlinear estimates of complex systems.
We show in simulations that the resulting particle filter yields good estimates in a wide range of scenarios.
arXiv Detail & Related papers (2021-10-06T16:58:34Z) - Deconvolutional Density Network: Free-Form Conditional Density
Estimation [6.805003206706124]
A neural network can be used to compute the output distribution explicitly.
We show the benefits of modeling free-form distributions using deconvolution.
We compare our method to a number of other density-estimation approaches.
arXiv Detail & Related papers (2021-05-29T20:09:25Z) - Embedding Propagation: Smoother Manifold for Few-Shot Classification [131.81692677836202]
We propose to use embedding propagation as an unsupervised non-parametric regularizer for manifold smoothing in few-shot classification.
We empirically show that embedding propagation yields a smoother embedding manifold.
We show that embedding propagation consistently improves the accuracy of the models in multiple semi-supervised learning scenarios by up to 16% points.
arXiv Detail & Related papers (2020-03-09T13:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.