Towards Predicting Any Human Trajectory In Context
- URL: http://arxiv.org/abs/2506.00871v1
- Date: Sun, 01 Jun 2025 07:18:47 GMT
- Title: Towards Predicting Any Human Trajectory In Context
- Authors: Ryo Fujii, Hideo Saito, Ryo Hachiuma,
- Abstract summary: We introduce TrajICL, an In-Context Learning framework for pedestrian trajectory prediction.<n>TrajICL enables rapid adaptation without fine-tuning on scenario-specific data.<n>We train our model on a large-scale synthetic dataset to enhance its prediction ability.
- Score: 10.332817296500533
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Predicting accurate future trajectories of pedestrians is essential for autonomous systems but remains a challenging task due to the need for adaptability in different environments and domains. A common approach involves collecting scenario-specific data and performing fine-tuning via backpropagation. However, this process is often impractical on edge devices due to constrained computational resources. To address this challenge, we introduce TrajICL, an In-Context Learning (ICL) framework for pedestrian trajectory prediction that enables rapid adaptation without fine-tuning on the scenario-specific data. We propose a spatio-temporal similarity-based example selection (STES) method that selects relevant examples from previously observed trajectories within the same scene by identifying similar motion patterns at corresponding locations. To further refine this selection, we introduce prediction-guided example selection (PG-ES), which selects examples based on both the past trajectory and the predicted future trajectory, rather than relying solely on the past trajectory. This approach allows the model to account for long-term dynamics when selecting examples. Finally, instead of relying on small real-world datasets with limited scenario diversity, we train our model on a large-scale synthetic dataset to enhance its prediction ability by leveraging in-context examples. Extensive experiments demonstrate that TrajICL achieves remarkable adaptation across both in-domain and cross-domain scenarios, outperforming even fine-tuned approaches across multiple public benchmarks. The code will be released at https://fujiry0.github.io/TrajICL-project-page.
Related papers
- Exploring Semantic Clustering and Similarity Search for Heterogeneous Traffic Scenario Graph [41.2584175136191]
We first propose an expressive and flexible heterogeneous,temporal graph model for representing traffic scenarios.<n>We then propose a self-supervised method to learn a universal embedding space for scenario graphs.<n>In particular, we implement contrastive learning alongside a bootstrapping-based approach and evaluate their suitability for the scenario space.
arXiv Detail & Related papers (2025-07-07T15:10:03Z) - SSTP: Efficient Sample Selection for Trajectory Prediction [46.9148610403273]
Training advanced trajectory prediction models on large-scale datasets is time-consuming and computationally expensive.<n>We propose the Sample Selection for Trajectory Prediction framework, which constructs a compact yet balanced dataset for trajectory prediction.<n>SSTP exhibits strong generalization and robustness, and the selected subset is model-agnostic, offering a broadly applicable solution.
arXiv Detail & Related papers (2024-09-25T22:00:11Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - DICE: Diverse Diffusion Model with Scoring for Trajectory Prediction [7.346307332191997]
We present a novel framework that leverages diffusion models for predicting future trajectories in a computationally efficient manner.
We employ an efficient sampling mechanism that allows us to maximize the number of sampled trajectories for improved accuracy.
We show the effectiveness of our approach by conducting empirical evaluations on common pedestrian (UCY/ETH) and autonomous driving (nuScenes) benchmark datasets.
arXiv Detail & Related papers (2023-10-23T05:04:23Z) - Graph-based Spatial Transformer with Memory Replay for Multi-future
Pedestrian Trajectory Prediction [13.466380808630188]
We propose a model to forecast multiple paths based on a historical trajectory.
Our method can exploit the spatial information as well as correct the temporally inconsistent trajectories.
Our experiments show that the proposed model achieves state-of-the-art performance on multi-future prediction and competitive results for single-future prediction.
arXiv Detail & Related papers (2022-06-12T10:25:12Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
Recent deep learning approaches for trajectory prediction show promising performance.
It remains unclear which features such black-box models actually learn to use for making predictions.
This paper proposes a procedure that quantifies the contributions of different cues to model performance.
arXiv Detail & Related papers (2021-10-11T14:24:15Z) - Multi-modal anticipation of stochastic trajectories in a dynamic
environment with Conditional Variational Autoencoders [0.12183405753834559]
Short-term motion of nearby vehicles is not strictly limited to a set of single trajectories.
We propose to account for the multi-modality of the problem with use of Conditional Conditional Autoencoder (C-VAE) conditioned on an agent's past motion as well as a scene encoded with Capsule Network (CapsNet)
In addition, we demonstrate advantages of employing the Minimum over N generated samples and tries to minimise the loss with respect to the closest sample, effectively leading to more diverse predictions.
arXiv Detail & Related papers (2021-03-05T19:38:26Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.