PCoreSet: Effective Active Learning through Knowledge Distillation from Vision-Language Models
- URL: http://arxiv.org/abs/2506.00910v1
- Date: Sun, 01 Jun 2025 08:54:37 GMT
- Title: PCoreSet: Effective Active Learning through Knowledge Distillation from Vision-Language Models
- Authors: Seongjae Kang, Dong Bok Lee, Hyungjoon Jang, Dongseop Kim, Sung Ju Hwang,
- Abstract summary: We introduce ActiveKD, a framework that integrates active learning with knowledge distillation.<n>We propose PCoreSet, a selection strategy that maximizes coverage in the probability space rather than the feature space.<n>PCoreSet consistently outperforms existing selection methods within the ActiveKD framework.
- Score: 46.61443903356605
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge distillation (KD) is a widely used framework for training compact, task-specific models by leveraging the knowledge of teacher models. However, its application to active learning (AL), which aims to minimize annotation costs through iterative sample selection, remains underexplored. This gap stems from the fact that KD typically assumes access to sufficient labeled data, whereas AL operates in data-scarce scenarios where task-specific teacher models are often unavailable. In this paper, we introduce ActiveKD, a framework that integrates AL with KD by leveraging the zero- and few-shot capabilities of large vision-language models (VLMs). A key aspect of ActiveKD is the structured prediction bias of VLMs -- i.e., their predictions form clusters in the probability space. We regard this structure as an inductive bias of the teacher model, capturing generalizable output patterns beneficial to student learning. To exploit this bias, we propose Probabilistic CoreSet (PCoreSet), a selection strategy that maximizes coverage in the probability space rather than the feature space. PCoreSet strategically selects categorically diverse unlabeled samples, facilitating more efficient transfer of teacher knowledge under limited annotation budgets. Evaluations on 11 datasets show that PCoreSet consistently outperforms existing selection methods within the ActiveKD framework, advancing research at the intersection of AL and KD.
Related papers
- A Dual-Space Framework for General Knowledge Distillation of Large Language Models [98.73585104789217]
Knowledge distillation (KD) is a promising solution to compress large language models (LLMs) by transferring their knowledge to smaller models.<n>The current white-box KD framework exhibits two limitations.<n>We propose a dual-space knowledge distillation (DSKD) framework that unifies the prediction heads of the teacher and the student models for KD.
arXiv Detail & Related papers (2025-04-15T17:38:47Z) - Active Data Curation Effectively Distills Large-Scale Multimodal Models [66.23057263509027]
Knowledge distillation (KD) is the de facto standard for compressing large-scale models into smaller ones.<n>In this work we explore an alternative, yet simple approach -- active data curation as effective distillation for contrastive multimodal pretraining.<n>Our simple online batch selection method, ACID, outperforms strong KD baselines across various model-, data- and compute-configurations.
arXiv Detail & Related papers (2024-11-27T18:50:15Z) - Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling [81.00825302340984]
We introduce Speculative Knowledge Distillation (SKD) to generate high-quality training data on-the-fly.<n>In SKD, the student proposes tokens, and the teacher replaces poorly ranked ones based on its own distribution.<n>We evaluate SKD on various text generation tasks, including translation, summarization, math, and instruction following.
arXiv Detail & Related papers (2024-10-15T06:51:25Z) - Linear Projections of Teacher Embeddings for Few-Class Distillation [14.99228980898161]
Knowledge Distillation (KD) has emerged as a promising approach for transferring knowledge from a larger, more complex teacher model to a smaller student model.
We introduce a novel method for distilling knowledge from the teacher's model representations, which we term Learning Embedding Linear Projections (LELP)
Our experimental evaluation on large-scale NLP benchmarks like Amazon Reviews and Sentiment140 demonstrate the LELP is consistently competitive with, and typically superior to, existing state-of-the-art distillation algorithms for binary and few-class problems.
arXiv Detail & Related papers (2024-09-30T16:07:34Z) - Densely Distilling Cumulative Knowledge for Continual Learning [14.343655566551213]
Continual learning, involving sequential training on diverse tasks, often faces catastrophic forgetting.
We propose Dense Knowledge Distillation (DKD) to distill the cumulative knowledge of all the previous tasks.
Our DKD outperforms recent state-of-the-art baselines across diverse benchmarks and scenarios.
arXiv Detail & Related papers (2024-05-16T05:37:06Z) - PromptKD: Distilling Student-Friendly Knowledge for Generative Language Models via Prompt Tuning [30.70974942397732]
We propose PromptKD to enable generative language models to transfer student-friendly knowledge.
Experiments on instruction-following datasets show that PromptKD achieves state-of-the-art performance.
Further analysis suggests that distilling student-friendly knowledge alleviates exposure bias effectively throughout the entire training process.
arXiv Detail & Related papers (2024-02-20T09:10:08Z) - Distilling Privileged Multimodal Information for Expression Recognition using Optimal Transport [46.91791643660991]
Deep learning models for multimodal expression recognition have reached remarkable performance in controlled laboratory environments.
These models struggle in the wild because of the unavailability and quality of modalities used for training.
In practice, only a subset of the training-time modalities may be available at test time.
Learning with privileged information enables models to exploit data from additional modalities that are only available during training.
arXiv Detail & Related papers (2024-01-27T19:44:15Z) - Large-scale Pre-trained Models are Surprisingly Strong in Incremental Novel Class Discovery [76.63807209414789]
We challenge the status quo in class-iNCD and propose a learning paradigm where class discovery occurs continuously and truly unsupervisedly.
We propose simple baselines, composed of a frozen PTM backbone and a learnable linear classifier, that are not only simple to implement but also resilient under longer learning scenarios.
arXiv Detail & Related papers (2023-03-28T13:47:16Z) - Oracle Teacher: Leveraging Target Information for Better Knowledge
Distillation of CTC Models [10.941519846908697]
We introduce a new type of teacher model for connectionist temporal classification ( CTC)-based sequence models, namely Oracle Teacher.
Since the Oracle Teacher learns a more accurate CTC alignment by referring to the target information, it can provide the student with more optimal guidance.
Based on a many-to-one mapping property of the CTC algorithm, we present a training strategy that can effectively prevent the trivial solution.
arXiv Detail & Related papers (2021-11-05T14:14:05Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
We introduce generalizations that ensure that our approach is both cost-aware and allows for fine-grained selection of examples through partially labeled scenes.
Our experiments on a real-world, large-scale self-driving dataset suggest that fine-grained selection can improve the performance across perception, prediction, and downstream planning tasks.
arXiv Detail & Related papers (2021-04-08T17:57:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.