Camera Trajectory Generation: A Comprehensive Survey of Methods, Metrics, and Future Directions
- URL: http://arxiv.org/abs/2506.00974v1
- Date: Sun, 01 Jun 2025 11:58:25 GMT
- Title: Camera Trajectory Generation: A Comprehensive Survey of Methods, Metrics, and Future Directions
- Authors: Zahra Dehghanian, Pouya Ardekhani, Amir Vahedi, Hamid Beigy, Hamid R. Rabiee,
- Abstract summary: Camera trajectory generation is a cornerstone in computer graphics, robotics, virtual reality, and cinematography.<n>Despite its growing prominence, the field lacks a systematic and unified survey that consolidates essential knowledge and advancements in this domain.<n>We introduce the different approaches to camera representation and present an in-depth review of available camera trajectory generation models.
- Score: 13.258635303030605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Camera trajectory generation is a cornerstone in computer graphics, robotics, virtual reality, and cinematography, enabling seamless and adaptive camera movements that enhance visual storytelling and immersive experiences. Despite its growing prominence, the field lacks a systematic and unified survey that consolidates essential knowledge and advancements in this domain. This paper addresses this gap by providing the first comprehensive review of the field, covering from foundational definitions to advanced methodologies. We introduce the different approaches to camera representation and present an in-depth review of available camera trajectory generation models, starting with rule-based approaches and progressing through optimization-based techniques, machine learning advancements, and hybrid methods that integrate multiple strategies. Additionally, we gather and analyze the metrics and datasets commonly used for evaluating camera trajectory systems, offering insights into how these tools measure performance, aesthetic quality, and practical applicability. Finally, we highlight existing limitations, critical gaps in current research, and promising opportunities for investment and innovation in the field. This paper not only serves as a foundational resource for researchers entering the field but also paves the way for advancing adaptive, efficient, and creative camera trajectory systems across diverse applications.
Related papers
- Motion Generation: A Survey of Generative Approaches and Benchmarks [1.4254358932994455]
We provide an in-depth categorization of motion generation methods based on their underlying generative strategies.<n>Our main focus is on papers published in top-tier venues since 2023, reflecting the most recent advancements in the field.<n>We analyze architectural principles, conditioning mechanisms, and generation settings, and compile a detailed overview of the evaluation metrics and datasets used across the literature.
arXiv Detail & Related papers (2025-07-07T19:04:56Z) - A Systematic Investigation on Deep Learning-Based Omnidirectional Image and Video Super-Resolution [30.62413133817583]
This paper presents a systematic review of recent progress in omnidirectional image and video super-resolution.<n>We introduce a new dataset, 360Insta, that comprises authentically degraded omnidirectional images and videos.<n>We conduct comprehensive qualitative and quantitative evaluations of existing methods on both public datasets and our proposed dataset.
arXiv Detail & Related papers (2025-06-07T08:24:44Z) - Hardware, Algorithms, and Applications of the Neuromorphic Vision Sensor: a Review [0.0]
Neuromorphic, or event, cameras represent a transformation in the classical approach to visual sensing encodes detected instantaneous per-pixel illumination changes into an asynchronous stream of event packets.<n>Their novelty lies in the transition from capturing full picture frames at fixed time intervals to a sparse data format which, with its distinctive qualities, offers potential improvements in various applications.
arXiv Detail & Related papers (2025-04-11T14:46:36Z) - Generative AI for Vision: A Comprehensive Study of Frameworks and Applications [0.0]
Generative AI is transforming image synthesis, enabling the creation of high-quality, diverse, and photorealistic visuals.<n>This work presents a structured classification of image generation techniques based on the nature of the input.<n>We highlight key frameworks including DALL-E, ControlNet, and DeepSeek Janus-Pro, and address challenges such as computational costs, data biases, and output alignment with user intent.
arXiv Detail & Related papers (2025-01-29T22:42:05Z) - Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
World models and video generation are pivotal technologies in the domain of autonomous driving.
This paper investigates the relationship between these two technologies.
By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions.
arXiv Detail & Related papers (2024-11-05T08:58:35Z) - Survey on Emotion Recognition through Posture Detection and the possibility of its application in Virtual Reality [0.0]
A survey is presented focused on using pose estimation techniques in Emotional recognition using various technologies normal cameras, and depth cameras for real-time, and the potential use of VR and inputs including images, videos, and 3-dimensional poses described in vector space.
We discussed 19 research papers collected from selected journals and databases highlighting their methodology, classification algorithm, and the used datasets that relate to emotion recognition and pose estimation.
arXiv Detail & Related papers (2024-08-03T10:01:29Z) - Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey [10.494414329120909]
Event-based cameras, inspired by the biological retina, have evolved into cutting-edge sensors distinguished by their minimal power requirements, negligible latency, superior temporal resolution, and expansive dynamic range.
Event-based cameras address limitations by eschewing extraneous data transmissions and obviating motion blur in high-speed imaging scenarios.
This paper offers an exhaustive review of research and applications particularly in the autonomous driving context.
arXiv Detail & Related papers (2024-07-05T06:17:00Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
A crucial aspect is embedding techniques that covert the high-dimensional discrete features, such as user and item IDs, into low-dimensional continuous vectors.
Applying embedding techniques captures complex entity relationships and has spurred substantial research.
This survey covers embedding methods like collaborative filtering, self-supervised learning, and graph-based techniques.
arXiv Detail & Related papers (2023-10-28T06:31:06Z) - Deep Learning for Camera Calibration and Beyond: A Survey [100.75060862015945]
Camera calibration involves estimating camera parameters to infer geometric features from captured sequences.<n>Recent efforts show that learning-based solutions have the potential to be used in place of the repeatability works of manual calibrations.
arXiv Detail & Related papers (2023-03-19T04:00:05Z) - Deep Learning for Event-based Vision: A Comprehensive Survey and Benchmarks [55.81577205593956]
Event cameras are bio-inspired sensors that capture the per-pixel intensity changes asynchronously.
Deep learning (DL) has been brought to this emerging field and inspired active research endeavors in mining its potential.
arXiv Detail & Related papers (2023-02-17T14:19:28Z) - Lighting the Darkness in the Deep Learning Era [118.35081853500411]
Low-light image enhancement (LLIE) aims at improving the perception or interpretability of an image captured in an environment with poor illumination.
Recent advances in this area are dominated by deep learning-based solutions.
We provide a comprehensive survey to cover various aspects ranging from algorithm taxonomy to unsolved open issues.
arXiv Detail & Related papers (2021-04-21T19:12:19Z) - Video Summarization Using Deep Neural Networks: A Survey [72.98424352264904]
Video summarization technologies aim to create a concise and complete synopsis by selecting the most informative parts of the video content.
This work focuses on the recent advances in the area and provides a comprehensive survey of the existing deep-learning-based methods for generic video summarization.
arXiv Detail & Related papers (2021-01-15T11:41:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.