Hardware, Algorithms, and Applications of the Neuromorphic Vision Sensor: a Review
- URL: http://arxiv.org/abs/2504.08588v1
- Date: Fri, 11 Apr 2025 14:46:36 GMT
- Title: Hardware, Algorithms, and Applications of the Neuromorphic Vision Sensor: a Review
- Authors: Claudio Cimarelli, Jose Andres Millan-Romera, Holger Voos, Jose Luis Sanchez-Lopez,
- Abstract summary: Neuromorphic, or event, cameras represent a transformation in the classical approach to visual sensing encodes detected instantaneous per-pixel illumination changes into an asynchronous stream of event packets.<n>Their novelty lies in the transition from capturing full picture frames at fixed time intervals to a sparse data format which, with its distinctive qualities, offers potential improvements in various applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuromorphic, or event, cameras represent a transformation in the classical approach to visual sensing encodes detected instantaneous per-pixel illumination changes into an asynchronous stream of event packets. Their novelty compared to standard cameras lies in the transition from capturing full picture frames at fixed time intervals to a sparse data format which, with its distinctive qualities, offers potential improvements in various applications. However, these advantages come at the cost of reinventing algorithmic procedures or adapting them to effectively process the new data format. In this survey, we systematically examine neuromorphic vision along three main dimensions. First, we highlight the technological evolution and distinctive hardware features of neuromorphic cameras from their inception to recent models. Second, we review image processing algorithms developed explicitly for event-based data, covering key works on feature detection, tracking, and optical flow -which form the basis for analyzing image elements and transformations -as well as depth and pose estimation or object recognition, which interpret more complex scene structures and components. These techniques, drawn from classical computer vision and modern data-driven approaches, are examined to illustrate the breadth of applications for event-based cameras. Third, we present practical application case studies demonstrating how event cameras have been successfully used across various industries and scenarios. Finally, we analyze the challenges limiting widespread adoption, identify significant research gaps compared to standard imaging techniques, and outline promising future directions and opportunities that neuromorphic vision offers.
Related papers
- Descriptor: Face Detection Dataset for Programmable Threshold-Based Sparse-Vision [0.8271394038014485]
This dataset is an annotated, temporal-threshold-based vision dataset for face detection tasks derived from the same videos used for Aff-Wild2.
We anticipate that this resource will significantly support the development of robust vision systems based on smart sensors that can process based on temporal-difference thresholds.
arXiv Detail & Related papers (2024-10-01T03:42:03Z) - Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey [10.494414329120909]
Event-based cameras, inspired by the biological retina, have evolved into cutting-edge sensors distinguished by their minimal power requirements, negligible latency, superior temporal resolution, and expansive dynamic range.
Event-based cameras address limitations by eschewing extraneous data transmissions and obviating motion blur in high-speed imaging scenarios.
This paper offers an exhaustive review of research and applications particularly in the autonomous driving context.
arXiv Detail & Related papers (2024-07-05T06:17:00Z) - Neuromorphic Synergy for Video Binarization [54.195375576583864]
Bimodal objects serve as a visual form to embed information that can be easily recognized by vision systems.
Neuromorphic cameras offer new capabilities for alleviating motion blur, but it is non-trivial to first de-blur and then binarize the images in a real-time manner.
We propose an event-based binary reconstruction method that leverages the prior knowledge of the bimodal target's properties to perform inference independently in both event space and image space.
We also develop an efficient integration method to propagate this binary image to high frame rate binary video.
arXiv Detail & Related papers (2024-02-20T01:43:51Z) - Neuromorphic Face Analysis: a Survey [26.357357272526322]
Neuromorphic sensors, also known as event cameras, are a class of imaging devices mimicking the function of biological visual systems.
These properties have proven to be interesting in modeling human faces, both from an effectiveness and a privacy-preserving point of view.
This survey paper presents a comprehensive overview of capabilities, challenges and emerging applications in the domain of neuromorphic face analysis.
arXiv Detail & Related papers (2024-02-18T16:17:25Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
We propose a novel geometric-aware pretraining framework called GAPretrain.
GAPretrain serves as a plug-and-play solution that can be flexibly applied to multiple state-of-the-art detectors.
We achieve 46.2 mAP and 55.5 NDS on the nuScenes val set using the BEVFormer method, with a gain of 2.7 and 2.1 points, respectively.
arXiv Detail & Related papers (2023-04-06T14:33:05Z) - Deep Learning for Event-based Vision: A Comprehensive Survey and Benchmarks [55.81577205593956]
Event cameras are bio-inspired sensors that capture the per-pixel intensity changes asynchronously.
Deep learning (DL) has been brought to this emerging field and inspired active research endeavors in mining its potential.
arXiv Detail & Related papers (2023-02-17T14:19:28Z) - Recognizing Actions in Videos from Unseen Viewpoints [80.6338404141284]
We show that current convolutional neural network models are unable to recognize actions from camera viewpoints not present in training data.
We introduce a new dataset for unseen view recognition and show the approaches ability to learn viewpoint invariant representations.
arXiv Detail & Related papers (2021-03-30T17:17:54Z) - Translate to Adapt: RGB-D Scene Recognition across Domains [18.40373730109694]
In this work we put under the spotlight the existence of a possibly severe domain shift issue within multi-modality scene recognition datasets.
We present a method based on self-supervised inter-modality translation able to adapt across different camera domains.
arXiv Detail & Related papers (2021-03-26T18:20:29Z) - Wide-angle Image Rectification: A Survey [86.36118799330802]
wide-angle images contain distortions that violate the assumptions underlying pinhole camera models.
Image rectification, which aims to correct these distortions, can solve these problems.
We present a detailed description and discussion of the camera models used in different approaches.
Next, we review both traditional geometry-based image rectification methods and deep learning-based methods.
arXiv Detail & Related papers (2020-10-30T17:28:40Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.