論文の概要: Motion-Aware Concept Alignment for Consistent Video Editing
- arxiv url: http://arxiv.org/abs/2506.01004v1
- Date: Sun, 01 Jun 2025 13:28:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:09.245408
- Title: Motion-Aware Concept Alignment for Consistent Video Editing
- Title(参考訳): 映像編集のための動き認識型概念アライメント
- Authors: Tong Zhang, Juan C Leon Alcazar, Bernard Ghanem,
- Abstract要約: MoCA-Video (Motion-Aware Concept Alignment in Video) は、画像ドメインのセマンティックミキシングとビデオのギャップを埋めるトレーニング不要のフレームワークである。
生成されたビデオとユーザが提供した参照画像が与えられた後、MoCA-Videoは参照画像のセマンティックな特徴をビデオ内の特定のオブジェクトに注入する。
我々は、標準SSIM、画像レベルLPIPS、時間LPIPSを用いてMoCAの性能を評価し、新しいメトリクスCASS(Conceptual Alignment Shift Score)を導入し、ソースプロンプトと修正ビデオフレーム間の視覚的シフトの一貫性と有効性を評価する。
- 参考スコア(独自算出の注目度): 57.08108545219043
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce MoCA-Video (Motion-Aware Concept Alignment in Video), a training-free framework bridging the gap between image-domain semantic mixing and video. Given a generated video and a user-provided reference image, MoCA-Video injects the semantic features of the reference image into a specific object within the video, while preserving the original motion and visual context. Our approach leverages a diagonal denoising schedule and class-agnostic segmentation to detect and track objects in the latent space and precisely control the spatial location of the blended objects. To ensure temporal coherence, we incorporate momentum-based semantic corrections and gamma residual noise stabilization for smooth frame transitions. We evaluate MoCA's performance using the standard SSIM, image-level LPIPS, temporal LPIPS, and introduce a novel metric CASS (Conceptual Alignment Shift Score) to evaluate the consistency and effectiveness of the visual shifts between the source prompt and the modified video frames. Using self-constructed dataset, MoCA-Video outperforms current baselines, achieving superior spatial consistency, coherent motion, and a significantly higher CASS score, despite having no training or fine-tuning. MoCA-Video demonstrates that structured manipulation in the diffusion noise trajectory allows for controllable, high-quality video synthesis.
- Abstract(参考訳): MoCA-Video (Motion-Aware Concept Alignment in Video) は、画像ドメインのセマンティックミキシングとビデオのギャップを埋めるトレーニング不要のフレームワークである。
生成されたビデオとユーザが提供した参照画像が与えられた後、MoCA-Videoは参照画像のセマンティックな特徴をビデオ内の特定のオブジェクトに注入し、元の動きと視覚的コンテキストを保存する。
提案手法は, 対角方向の遮音スケジュールとクラス非依存セグメンテーションを利用して, 潜時空間における物体の検出と追跡を行い, 混合物体の空間的位置を正確に制御する。
時間的コヒーレンスを確保するため、スムーズなフレーム遷移に対して運動量に基づく意味補正とガンマ残差雑音安定化を組み込む。
我々は、標準SSIM、画像レベルLPIPS、時間LPIPSを用いてMoCAの性能を評価し、新しいメトリクスCASS(Conceptual Alignment Shift Score)を導入し、ソースプロンプトと修正ビデオフレーム間の視覚的シフトの一貫性と有効性を評価する。
自己構築されたデータセットを使用することで、MoCA-Videoは現在のベースラインを上回り、トレーニングや微調整をしていないにも関わらず、より優れた空間整合性、コヒーレントな動き、CASSスコアを達成できる。
MoCA-Videoは拡散ノイズ軌道における構造的操作が制御可能で高品質なビデオ合成を可能にすることを示した。
関連論文リスト
- Tracktention: Leveraging Point Tracking to Attend Videos Faster and Better [61.381599921020175]
時間的一貫性は、出力が一貫性があり、アーティファクトがないことを保証するために、ビデオ予測において重要である。
時間的注意や3D畳み込みといった伝統的な手法は、重要な物体の動きに苦しむことがある。
本稿では,ポイントトラックを用いた動き情報を明示的に統合する新しいアーキテクチャコンポーネントであるトラックキート・レイヤを提案する。
論文 参考訳(メタデータ) (2025-03-25T17:58:48Z) - MCDS-VSS: Moving Camera Dynamic Scene Video Semantic Segmentation by Filtering with Self-Supervised Geometry and Motion [17.50161162624179]
自動運転車は意思決定に信頼性のあるセマンティックな環境認識に依存している。
本稿では,カメラのシーン形状とエゴモーションを自己教師付きで学習する構造化フィルタモデルMCDS-VSSを提案する。
我々のモデルは自動車シーンを、シーン幾何学、エゴモーション、オブジェクトモーションなどの複数の解釈可能な表現に解析する。
論文 参考訳(メタデータ) (2024-05-30T10:33:14Z) - Video Dynamics Prior: An Internal Learning Approach for Robust Video
Enhancements [83.5820690348833]
外部トレーニングデータコーパスを必要としない低レベルの視覚タスクのためのフレームワークを提案する。
提案手法は,コヒーレンス・時間的テストの重み付けと統計内部統計を利用して,破損したシーケンスを最適化することでニューラルモジュールを学習する。
論文 参考訳(メタデータ) (2023-12-13T01:57:11Z) - Implicit Motion-Compensated Network for Unsupervised Video Object
Segmentation [25.41427065435164]
教師なしビデオオブジェクトセグメンテーション(UVOS)は、ビデオシーケンスの背景から一次前景オブジェクトを自動的に分離することを目的としている。
既存のUVOS手法では、視覚的に類似した環境(外観ベース)がある場合や、動的背景と不正確な流れ(フローベース)のために予測品質の劣化に悩まされている場合、堅牢性を欠いている。
本稿では,隣接するフレームから特徴レベルにおける現在のフレームへの一致した動き情報と相補的キュー(textiti.e.$, appearance and motion)を組み合わせた暗黙的動き補償ネットワーク(IMCNet)を提案する。
論文 参考訳(メタデータ) (2022-04-06T13:03:59Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
本稿では,新しいビデオカモフラージュオブジェクト検出(VCOD)フレームワークを提案する。
短期的および長期的整合性を利用して、ビデオフレームからカモフラージュされたオブジェクトを検出する。
論文 参考訳(メタデータ) (2022-03-14T17:55:41Z) - Contrastive Transformation for Self-supervised Correspondence Learning [120.62547360463923]
野生のラベルのない動画を用いて,視覚的対応の自己監督学習について検討する。
本手法は,信頼性の高い対応推定のための映像内および映像間表現関連を同時に検討する。
我々のフレームワークは、近年の視覚的タスクにおける自己監督型対応手法よりも優れています。
論文 参考訳(メタデータ) (2020-12-09T14:05:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。